Solveeit Logo

Question

Question: Let a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ….. form an A.P. then a<sub>1</sub><sup>2</sup> – a...

Let a1, a2, a3, ….. form an A.P. then a12 – a22 + a32 –a42 + ……+ a22n–1– a22n =

A

n2n1(a12a2n2)\frac{n}{2n - 1}(a_{1}^{2} - a_{2n}^{2})

B

2nn1(a2n2a12)\frac{2n}{n - 1}(a_{2n}^{2}–a_{1}^{2})

C

nn+1(a12+a2n2)\frac{n}{n + 1}(a_{1}^{2} + a_{2n}^{2})

D

None of these

Answer

n2n1(a12a2n2)\frac{n}{2n - 1}(a_{1}^{2} - a_{2n}^{2})

Explanation

Solution

Let 'd' be common difference of A.P.

(a12a22a_{1}^{2} - a_{2}^{2}) + (a32a42a_{3}^{2} - a_{4}^{2})+ …….+ (a2n12a2n2a_{2n - 1}^{2} - a_{2n}^{2})

= (a1 –a2) (a1 + a2) + (a3 – a4) (a3 + a4) +……+ (a2n–1 – a2n)

= –d(a1 + a2)+(–d) (a3 + a4) +..+ (–d) (a2n–1 +a2n)

= – d[a1 + a2 + a3 + a4 +…..+a2n]

= – d[2n2(a1+a2n)]\left\lbrack \frac{2n}{2}(a_{1} + a_{2n}) \right\rbrack [a2n=a1+(2n1)dd=a2na12n1 \left\lbrack \begin{matrix} a_{2n} = a_{1} + (2n - 1)d \\ d = \frac{a_{2n} - a_{1}}{2n - 1} \end{matrix} \right.\

= (a1a2n2n1)\left( \frac{a_{1} - a_{2n}}{2n - 1} \right)× n × (a1 + a2n)

= n2n1\frac{n}{2n - 1} (a12a2n2a_{1}^{2} - a_{2n}^{2})