Question
Question: Let a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ….. form an A.P. then a<sub>1</sub><sup>2</sup> – a...
Let a1, a2, a3, ….. form an A.P. then a12 – a22 + a32 –a42 + ……+ a22n–1– a22n =
A
2n−1n(a12−a2n2)
B
n−12n(a2n2–a12)
C
n+1n(a12+a2n2)
D
None of these
Answer
2n−1n(a12−a2n2)
Explanation
Solution
Let 'd' be common difference of A.P.
(a12−a22) + (a32−a42)+ …….+ (a2n−12−a2n2)
= (a1 –a2) (a1 + a2) + (a3 – a4) (a3 + a4) +……+ (a2n–1 – a2n)
= –d(a1 + a2)+(–d) (a3 + a4) +..+ (–d) (a2n–1 +a2n)
= – d[a1 + a2 + a3 + a4 +…..+a2n]
= – d[22n(a1+a2n)] [a2n=a1+(2n−1)dd=2n−1a2n−a1
= (2n−1a1−a2n)× n × (a1 + a2n)
= 2n−1n (a12−a2n2)