Question
Question: Let A<sub>0</sub> A<sub>1</sub> A<sub>2</sub> A<sub>3</sub> A<sub>4</sub> A<sub>5</sub>be a regular ...
Let A0 A1 A2 A3 A4 A5be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A0 A1 , A0 A2 and A0 A4 is-
A
43
B
33
C
3
D
233
Answer
3
Explanation
Solution
Sol. Let the vertices be z0, z1, …… z5 w.r.t. centre O as origin
|z0| = 1, A0 A1 = |z1 – z0| = |z0 eiq – z0|
\ A0A1 = |z0| |cos q + i sin q – 1|
= 1 . (cosθ−1)2+sin2θ =
2(1−cosθ).
\ A0A1 = 2.2sin22θ = 2 sin 2θ,
where q = 62π = 3π
Replacing q by 2q and 4q, we get
A0A2 = 2 sin 22θ= 2 sin q,
A0A4 = 2 sin 24θ = 2 sin 2q
\ (A0A1) (A0A2) (A0A4) = 8 sin 6πsin 3π sin 32π
= 8. 21. 23.23 = 3.