Solveeit Logo

Question

Question: Let α, β are roots of the equation sin<sup>2</sup>x + a sin x + b = 0 and also of cos<sup>2</sup>x +...

Let α, β are roots of the equation sin2x + a sin x + b = 0 and also of cos2x + c cos x + d = 0.

If cos (α + β) = a0a2+a1b2+a2c2+a3d2b0a2+b1b2+b2c2+b3d2\frac{a_{0}a^{2} + a_{1}b^{2} + a_{2}c^{2} + a_{3}d^{2}}{b_{0}a^{2} + b_{1}b^{2} + b_{2}c^{2} + b_{3}d^{2}}, then

a0+a1+a2+a3b0+b1+b2+b3\frac{- a_{0} + a_{1} + a_{2} + a_{3}}{b_{0} + b_{1} + b_{2} + b_{3}} equals

A

0

B

– 1

C

1

D

a0a1a2a3b0b1b2b3\frac{- a_{0}a_{1}a_{2}a_{3}}{b_{0}b_{1}b_{2}b_{3}}

Answer

1

Explanation

Solution

sin α + sin β = – a; sin α sin β = b

cos α + cos β = – c; cos α cos β = d

2 sin (α+β2)\left( \frac{\alpha + \beta}{2} \right)cos(αβ2)\left( \frac{\alpha - \beta}{2} \right) = – a

2 cos (α+β2)\left( \frac{\alpha + \beta}{2} \right) cos(αβ2)\left( \frac{\alpha - \beta}{2} \right) = – c

tan (α+β2)\left( \frac{\alpha + \beta}{2} \right)= ac\frac{a}{c}

1a2c21+a2c2\frac{1 - \frac{a^{2}}{c^{2}}}{1 + \frac{a^{2}}{c^{2}}}= a0a2+a1b2+a2c2+a3d2b0a2+b1b2+b2c2+b3d2\frac{a_{0}a^{2} + a_{1}b^{2} + a_{2}c^{2} + a_{3}d^{2}}{b_{0}a^{2} + b_{1}b^{2} + b_{2}c^{2} + b_{3}d^{2}}

⇒ a0 = – 1, a1 = 0, a2 = 1, a3 = 0

b0 = 1, b1 = 0, b2 = 1, b3 = 0

⇒ a0+a1+a2+a3b0+b1+b2+b3\frac{- a_{0} + a_{1} + a_{2} + a_{3}}{b_{0} + b_{1} + b_{2} + b_{3}}= 1