Question
Question: Let α, β are roots of the equation sin<sup>2</sup>x + a sin x + b = 0 and also of cos<sup>2</sup>x +...
Let α, β are roots of the equation sin2x + a sin x + b = 0 and also of cos2x + c cos x + d = 0.
If cos (α + β) = b0a2+b1b2+b2c2+b3d2a0a2+a1b2+a2c2+a3d2, then
b0+b1+b2+b3−a0+a1+a2+a3 equals
A
0
B
– 1
C
1
D
b0b1b2b3−a0a1a2a3
Answer
1
Explanation
Solution
sin α + sin β = – a; sin α sin β = b
cos α + cos β = – c; cos α cos β = d
2 sin (2α+β)cos(2α−β) = – a
2 cos (2α+β) cos(2α−β) = – c
tan (2α+β)= ca
1+c2a21−c2a2= b0a2+b1b2+b2c2+b3d2a0a2+a1b2+a2c2+a3d2
⇒ a0 = – 1, a1 = 0, a2 = 1, a3 = 0
b0 = 1, b1 = 0, b2 = 1, b3 = 0
⇒ b0+b1+b2+b3−a0+a1+a2+a3= 1