Solveeit Logo

Question

Mathematics Question on Sequences and Series of real numbers

Let {an}n≥1 be a sequence of real numbers such that an=13na_n=\frac{1}{3^n} for all n ≥ 1. Then which of the following statements is/are true ?

A

n=1(1)n+1an\sum^{\infin}_{n=1}(-1)^{n+1}a_n is a convergent series

B

n=1(1)n+1n(a1+a2+...+an)\sum^{\infin}_{n=1}\frac{(-1)^{n+1}}{n}(a_1+a_2+...+a_n) is a convergent series

C

The radius of convergence of the power series n=1anxn is 13\sum^{\infin}_{n=1}a_nx^n \text{ is }\frac{1}{3}

D

n=1ansin1an\sum^{\infin}_{n=1}a_n\sin\frac{1}{a_n} is a convergent series

Answer

n=1(1)n+1an\sum^{\infin}_{n=1}(-1)^{n+1}a_n is a convergent series

Explanation

Solution

The correct option is (A) : n=1(1)n+1an\sum^{\infin}_{n=1}(-1)^{n+1}a_n is a convergent series, (B) : n=1(1)n+1n(a1+a2+...+an)\sum^{\infin}_{n=1}\frac{(-1)^{n+1}}{n}(a_1+a_2+...+a_n) is a convergent series and (D) : n=1ansin1an\sum^{\infin}_{n=1}a_n\sin\frac{1}{a_n} is a convergent series.