Solveeit Logo

Question

Question: Let \(\alpha,\beta,\gamma\) be distinct real numbers. The points with position vectors \(\alpha\math...

Let α,β,γ\alpha,\beta,\gamma be distinct real numbers. The points with position vectors αi+βj+γk,βi+γj+αk,γi+αj+βk\alpha\mathbf{i} + \beta\mathbf{j} + \gamma\mathbf{k},\beta\mathbf{i} + \gamma\mathbf{j} + \alpha\mathbf{k},\gamma\mathbf{i} + \alpha\mathbf{j} + \beta\mathbf{k}

A

Are collinear

B

Form an equilateral triangle

C

Form a scalene triangle

D

Form a right angled triangle

Answer

Form an equilateral triangle

Explanation

Solution

Let P,QP,Q and RR be points having position vectors αi+βj+γk,\alpha\mathbf{i} + \beta\mathbf{j} + \gamma\mathbf{k}, βi+γj+αk\beta\mathbf{i} + \gamma\mathbf{j} + \alpha\mathbf{k} and γi+αj+βk\gamma\mathbf{i} + \alpha j + \beta\mathbf{k} respectively.

Then,PQ=QR=RP=(αβ)2+(βγ)2+(γα)2|\overset{\rightarrow}{PQ}| = |\overset{\rightarrow}{QR}| = |\overset{\rightarrow}{RP}| = \sqrt{(\alpha - \beta)^{2} + (\beta - \gamma)^{2} + (\gamma - \alpha)^{2}}

Hence ΔPQR\Delta PQR is an equilateral triangle.