Question
Mathematics Question on Binomial theorem
Let α=∑r=0n(4r2+2r+1)(rn) and β=(∑r=0nr+1(rn))+n+11. If 140<β2α<281, then the value of n is _____.
The expression for α is:
α=∑r=0n(4r2+2r+1)(rn).
Expand the summation:
α=∑r=0n4r2(rn)+∑r=0n2r(rn)+∑r=0n(rn).
Using standard summation identities for binomial coefficients:
∑r=0nr(rn)=n⋅2n−1,∑r=0nr2(rn)=n(n−1)⋅2n−2,∑r=0n(rn)=2n.
Substitute these results:
α=4n(n−1)×2n−2+2n×2n−1+2n.
Factorize:
α=2n−2[4n(n−1)+8n+4].
Simplify:
α=2n−2×2n(n+1)=2n(n+1)2n−2.
Now for β:
β=∑r=0n(r+1n)+n+11.
Rewrite the summation:
∑r=0n(r+1n)=∑r=1n(rn)=∑r=0n(rn)−(0n).
Using the summation of binomial coefficients:
∑r=0n(rn)=2n,(0n)=1.
Thus:
∑r=0n(r+1n)=2n−1.
Therefore:
β=(2n−1)+n+11.
Now calculate β2α:
β2α=(2n−1)+n+112×2n−2×2n(n+1).
Simplify:
β2α=2n−1+n+112n−1×n(n+1)2.
Testing values of n, find 140<β2α<281:
For n=4:
β2α=25−1+512×4×52=31.2200≈125(Too low).
For n=5:
β2α=26−1+612×5×62=63.17360≈216.
For n=6:
β2α=27−1+612×6×72.
Solution
The expression for α is:
α=∑r=0n(4r2+2r+1)(rn).
Expand the summation:
α=∑r=0n4r2(rn)+∑r=0n2r(rn)+∑r=0n(rn).
Using standard summation identities for binomial coefficients:
∑r=0nr(rn)=n⋅2n−1,∑r=0nr2(rn)=n(n−1)⋅2n−2,∑r=0n(rn)=2n.
Substitute these results:
α=4n(n−1)×2n−2+2n×2n−1+2n.
Factorize:
α=2n−2[4n(n−1)+8n+4].
Simplify:
α=2n−2×2n(n+1)=2n(n+1)2n−2.
Now for β:
β=∑r=0n(r+1n)+n+11.
Rewrite the summation:
∑r=0n(r+1n)=∑r=1n(rn)=∑r=0n(rn)−(0n).
Using the summation of binomial coefficients:
∑r=0n(rn)=2n,(0n)=1.
Thus:
∑r=0n(r+1n)=2n−1.
Therefore:
β=(2n−1)+n+11.
Now calculate β2α:
β2α=(2n−1)+n+112×2n−2×2n(n+1).
Simplify:
β2α=2n−1+n+112n−1×n(n+1)2.
Testing values of n, find 140<β2α<281:
For n=4:
β2α=25−1+512×4×52=31.2200≈125(Too low).
For n=5:
β2α=26−1+612×5×62=63.17360≈216.
For n=6:
β2α=27−1+612×6×72.