Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let α=r=0n(4r2+2r+1)(nr)\alpha = \sum_{r=0}^n (4r^2 + 2r + 1) \binom{n}{r} and β=(r=0n(nr)r+1)+1n+1\beta = \left( \sum_{r=0}^n \frac{\binom{n}{r}}{r+1} \right) + \frac{1}{n+1}. If 140<2αβ<281140 < \frac{2\alpha}{\beta} < 281, then the value of nn is _____.

Answer

The expression for α\alpha is:

α=r=0n(4r2+2r+1)(nr).\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \binom{n}{r}.

Expand the summation:

α=r=0n4r2(nr)+r=0n2r(nr)+r=0n(nr).\alpha = \sum_{r=0}^{n} 4r^2 \binom{n}{r} + \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r}.

Using standard summation identities for binomial coefficients:

r=0nr(nr)=n2n1,r=0nr2(nr)=n(n1)2n2,r=0n(nr)=2n.\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1}, \quad \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1) \cdot 2^{n-2}, \quad \sum_{r=0}^{n} \binom{n}{r} = 2^n.

Substitute these results:

α=4n(n1)×2n2+2n×2n1+2n.\alpha = 4n(n-1) \times 2^{n-2} + 2n \times 2^{n-1} + 2^n.

Factorize:

α=2n2[4n(n1)+8n+4].\alpha = 2^{n-2} [4n(n-1) + 8n + 4].

Simplify:

α=2n2×2n(n+1)=2n(n+1)2n2.\alpha = 2^{n-2} \times 2n(n+1) = 2n(n+1)2^{n-2}.

Now for β\beta:

β=r=0n(nr+1)+1n+1.\beta = \sum_{r=0}^{n} \binom{n}{r+1} + \frac{1}{n+1}.

Rewrite the summation:

r=0n(nr+1)=r=1n(nr)=r=0n(nr)(n0).\sum_{r=0}^{n} \binom{n}{r+1} = \sum_{r=1}^{n} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} - \binom{n}{0}.

Using the summation of binomial coefficients:

r=0n(nr)=2n,(n0)=1.\sum_{r=0}^{n} \binom{n}{r} = 2^n, \quad \binom{n}{0} = 1.

Thus:

r=0n(nr+1)=2n1.\sum_{r=0}^{n} \binom{n}{r+1} = 2^n - 1.

Therefore:

β=(2n1)+1n+1.\beta = (2^n - 1) + \frac{1}{n+1}.

Now calculate 2αβ\frac{2\alpha}{\beta}:

2αβ=2×2n2×2n(n+1)(2n1)+1n+1.\frac{2\alpha}{\beta} = \frac{2 \times 2^{n-2} \times 2n(n+1)}{(2^n - 1) + \frac{1}{n+1}}.

Simplify:

2αβ=2n1×n(n+1)22n1+1n+1.\frac{2\alpha}{\beta} = \frac{2^{n-1} \times n(n+1)^2}{2^n - 1 + \frac{1}{n+1}}.

Testing values of nn, find 140<2αβ<281140 < \frac{2\alpha}{\beta} < 281:

For n=4n = 4:

2αβ=2×4×52251+15=20031.2125(Too low).\frac{2\alpha}{\beta} = \frac{2 \times 4 \times 5^2}{2^5 - 1 + \frac{1}{5}} = \frac{200}{31.2} \approx 125 \quad \text{(Too low)}.

For n=5n = 5:

2αβ=2×5×62261+16=36063.17216.\frac{2\alpha}{\beta} = \frac{2 \times 5 \times 6^2}{2^6 - 1 + \frac{1}{6}} = \frac{360}{63.17} \approx 216.

For n=6n = 6:

2αβ=2×6×72271+16.\frac{2\alpha}{\beta} = \frac{2 \times 6 \times 7^2}{2^7 - 1 + \frac{1}{6}}.

Explanation

Solution

The expression for α\alpha is:

α=r=0n(4r2+2r+1)(nr).\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \binom{n}{r}.

Expand the summation:

α=r=0n4r2(nr)+r=0n2r(nr)+r=0n(nr).\alpha = \sum_{r=0}^{n} 4r^2 \binom{n}{r} + \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r}.

Using standard summation identities for binomial coefficients:

r=0nr(nr)=n2n1,r=0nr2(nr)=n(n1)2n2,r=0n(nr)=2n.\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1}, \quad \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1) \cdot 2^{n-2}, \quad \sum_{r=0}^{n} \binom{n}{r} = 2^n.

Substitute these results:

α=4n(n1)×2n2+2n×2n1+2n.\alpha = 4n(n-1) \times 2^{n-2} + 2n \times 2^{n-1} + 2^n.

Factorize:

α=2n2[4n(n1)+8n+4].\alpha = 2^{n-2} [4n(n-1) + 8n + 4].

Simplify:

α=2n2×2n(n+1)=2n(n+1)2n2.\alpha = 2^{n-2} \times 2n(n+1) = 2n(n+1)2^{n-2}.

Now for β\beta:

β=r=0n(nr+1)+1n+1.\beta = \sum_{r=0}^{n} \binom{n}{r+1} + \frac{1}{n+1}.

Rewrite the summation:

r=0n(nr+1)=r=1n(nr)=r=0n(nr)(n0).\sum_{r=0}^{n} \binom{n}{r+1} = \sum_{r=1}^{n} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} - \binom{n}{0}.

Using the summation of binomial coefficients:

r=0n(nr)=2n,(n0)=1.\sum_{r=0}^{n} \binom{n}{r} = 2^n, \quad \binom{n}{0} = 1.

Thus:

r=0n(nr+1)=2n1.\sum_{r=0}^{n} \binom{n}{r+1} = 2^n - 1.

Therefore:

β=(2n1)+1n+1.\beta = (2^n - 1) + \frac{1}{n+1}.

Now calculate 2αβ\frac{2\alpha}{\beta}:

2αβ=2×2n2×2n(n+1)(2n1)+1n+1.\frac{2\alpha}{\beta} = \frac{2 \times 2^{n-2} \times 2n(n+1)}{(2^n - 1) + \frac{1}{n+1}}.

Simplify:

2αβ=2n1×n(n+1)22n1+1n+1.\frac{2\alpha}{\beta} = \frac{2^{n-1} \times n(n+1)^2}{2^n - 1 + \frac{1}{n+1}}.

Testing values of nn, find 140<2αβ<281140 < \frac{2\alpha}{\beta} < 281:

For n=4n = 4:

2αβ=2×4×52251+15=20031.2125(Too low).\frac{2\alpha}{\beta} = \frac{2 \times 4 \times 5^2}{2^5 - 1 + \frac{1}{5}} = \frac{200}{31.2} \approx 125 \quad \text{(Too low)}.

For n=5n = 5:

2αβ=2×5×62261+16=36063.17216.\frac{2\alpha}{\beta} = \frac{2 \times 5 \times 6^2}{2^6 - 1 + \frac{1}{6}} = \frac{360}{63.17} \approx 216.

For n=6n = 6:

2αβ=2×6×72271+16.\frac{2\alpha}{\beta} = \frac{2 \times 6 \times 7^2}{2^7 - 1 + \frac{1}{6}}.