Solveeit Logo

Question

Question: Let $\alpha = \lim_{x \to 0} (\frac{e^x-1}{x})^{\frac{1}{x}}$, $\beta = \lim_{x \to 1} (\ln(ex))^{\l...

Let α=limx0(ex1x)1x\alpha = \lim_{x \to 0} (\frac{e^x-1}{x})^{\frac{1}{x}}, β=limx1(ln(ex))logxe\beta = \lim_{x \to 1} (\ln(ex))^{\log_x e} and γ=limnnsin(5n)+cos2(2n)n+5\gamma = \lim_{n \to \infty} \frac{\sqrt{n} \sin(5^n) + \cos^2(2^n)}{n+5}, then α2+β+γe\frac{\alpha^2 + \beta + \gamma}{e} is _______.

Answer

2

Explanation

Solution

To evaluate the expression α2+β+γe\frac{\alpha^2 + \beta + \gamma}{e}, we need to calculate the values of α\alpha, β\beta, and γ\gamma separately.

1. Calculate α=limx0(ex1x)1x\alpha = \lim_{x \to 0} \left(\frac{e^x-1}{x}\right)^{\frac{1}{x}}

This limit is of the indeterminate form 11^\infty. We can evaluate it using the formula limxa[f(x)]g(x)=elimxag(x)[f(x)1]\lim_{x \to a} [f(x)]^{g(x)} = e^{\lim_{x \to a} g(x)[f(x)-1]} if limxaf(x)=1\lim_{x \to a} f(x) = 1 and limxag(x)=\lim_{x \to a} g(x) = \infty. Here, f(x)=ex1xf(x) = \frac{e^x-1}{x} and g(x)=1xg(x) = \frac{1}{x}. As x0x \to 0, limx0ex1x=1\lim_{x \to 0} \frac{e^x-1}{x} = 1 (standard limit) and limx01x=\lim_{x \to 0} \frac{1}{x} = \infty. So, α=elimx01x(ex1x1)\alpha = e^{\lim_{x \to 0} \frac{1}{x} \left(\frac{e^x-1}{x} - 1\right)}. Let's evaluate the exponent L1=limx01x(ex1xx)=limx0ex1xx2L_1 = \lim_{x \to 0} \frac{1}{x} \left(\frac{e^x-1-x}{x}\right) = \lim_{x \to 0} \frac{e^x-1-x}{x^2}. This is of the form 00\frac{0}{0}. We can use L'Hopital's Rule twice or series expansion. Using series expansion: ex=1+x+x22!+x33!+O(x4)e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + O(x^4). So, ex1x=(1+x+x22+x36+O(x4))1x=x22+x36+O(x4)e^x-1-x = (1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4)) - 1 - x = \frac{x^2}{2} + \frac{x^3}{6} + O(x^4). L1=limx0x22+x36+O(x4)x2=limx0(12+x6+O(x2))=12L_1 = \lim_{x \to 0} \frac{\frac{x^2}{2} + \frac{x^3}{6} + O(x^4)}{x^2} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{6} + O(x^2)\right) = \frac{1}{2}. Therefore, α=e1/2=e\alpha = e^{1/2} = \sqrt{e}.

2. Calculate β=limx1(ln(ex))logxe\beta = \lim_{x \to 1} (\ln(ex))^{\log_x e}

This limit is also of the indeterminate form 11^\infty. As x1x \to 1, ln(ex)ln(e1)=lne=1\ln(ex) \to \ln(e \cdot 1) = \ln e = 1. And logxe=lnelnx=1lnx\log_x e = \frac{\ln e}{\ln x} = \frac{1}{\ln x}. As x1x \to 1, lnx0\ln x \to 0, so 1lnx\frac{1}{\ln x} \to \infty. Let f(x)=ln(ex)f(x) = \ln(ex) and g(x)=logxeg(x) = \log_x e. β=elimx1logxe(ln(ln(ex)))\beta = e^{\lim_{x \to 1} \log_x e (\ln(\ln(ex)))}. Let's evaluate the exponent L2=limx11lnxln(ln(ex))L_2 = \lim_{x \to 1} \frac{1}{\ln x} \ln(\ln(ex)). We know ln(ex)=lne+lnx=1+lnx\ln(ex) = \ln e + \ln x = 1 + \ln x. So, L2=limx1ln(1+lnx)lnxL_2 = \lim_{x \to 1} \frac{\ln(1+\ln x)}{\ln x}. Let y=lnxy = \ln x. As x1x \to 1, y0y \to 0. L2=limy0ln(1+y)yL_2 = \lim_{y \to 0} \frac{\ln(1+y)}{y}. This is a standard limit, which equals 1. Therefore, β=e1=e\beta = e^1 = e.

3. Calculate γ=limnnsin(5n)+cos2(2n)n+5\gamma = \lim_{n \to \infty} \frac{\sqrt{n} \sin(5^n) + \cos^2(2^n)}{n+5}

We use the Squeeze Theorem for this limit. We know that 1sin(5n)1-1 \le \sin(5^n) \le 1 and 0cos2(2n)10 \le \cos^2(2^n) \le 1. So, for the numerator: n1+0nsin(5n)+cos2(2n)n1+1-\sqrt{n} \cdot 1 + 0 \le \sqrt{n} \sin(5^n) + \cos^2(2^n) \le \sqrt{n} \cdot 1 + 1. nnsin(5n)+cos2(2n)n+1-\sqrt{n} \le \sqrt{n} \sin(5^n) + \cos^2(2^n) \le \sqrt{n}+1. Now, divide by n+5n+5 (which is positive for large nn): nn+5nsin(5n)+cos2(2n)n+5n+1n+5\frac{-\sqrt{n}}{n+5} \le \frac{\sqrt{n} \sin(5^n) + \cos^2(2^n)}{n+5} \le \frac{\sqrt{n}+1}{n+5}. Let's find the limits of the lower and upper bounds as nn \to \infty: limnnn+5=limn1/n1+5/n=01+0=0\lim_{n \to \infty} \frac{-\sqrt{n}}{n+5} = \lim_{n \to \infty} \frac{-1/\sqrt{n}}{1+5/n} = \frac{0}{1+0} = 0. limnn+1n+5=limn1/n+1/n1+5/n=0+01+0=0\lim_{n \to \infty} \frac{\sqrt{n}+1}{n+5} = \lim_{n \to \infty} \frac{1/\sqrt{n}+1/n}{1+5/n} = \frac{0+0}{1+0} = 0. By the Squeeze Theorem, γ=0\gamma = 0.

4. Calculate α2+β+γe\frac{\alpha^2 + \beta + \gamma}{e}

Substitute the values of α\alpha, β\beta, and γ\gamma: α2=(e)2=e\alpha^2 = (\sqrt{e})^2 = e. α2+β+γe=e+e+0e=2ee=2\frac{\alpha^2 + \beta + \gamma}{e} = \frac{e + e + 0}{e} = \frac{2e}{e} = 2.

The final answer is 2\boxed{2}.

Explanation of the solution:

  1. Calculate α\alpha: The limit is of 11^\infty form. Use the property lim[f(x)]g(x)=elimg(x)(f(x)1)\lim [f(x)]^{g(x)} = e^{\lim g(x)(f(x)-1)}. Evaluate the exponent limx0ex1xx2\lim_{x \to 0} \frac{e^x-1-x}{x^2} using Taylor series expansion of exe^x around x=0x=0 up to x2x^2 term. This yields 12\frac{1}{2}. So α=e1/2=e\alpha = e^{1/2} = \sqrt{e}.
  2. Calculate β\beta: The limit is of 11^\infty form. Use the same property as for α\alpha. The exponent becomes limx1ln(ln(ex))lnx\lim_{x \to 1} \frac{\ln(\ln(ex))}{\ln x}. Substitute ln(ex)=1+lnx\ln(ex) = 1 + \ln x. Let y=lnxy = \ln x. The exponent simplifies to limy0ln(1+y)y\lim_{y \to 0} \frac{\ln(1+y)}{y}, which is a standard limit equal to 1. So β=e1=e\beta = e^1 = e.
  3. Calculate γ\gamma: Use the Squeeze Theorem. The terms sin(5n)\sin(5^n) and cos2(2n)\cos^2(2^n) are bounded between 1-1 and 11, and 00 and 11 respectively. This gives bounds for the numerator: nNumeratorn+1-\sqrt{n} \le \text{Numerator} \le \sqrt{n}+1. Divide by n+5n+5 and take limits. Both lower and upper bounds approach 0 as nn \to \infty. Thus, γ=0\gamma = 0.
  4. Final Calculation: Substitute α2=e\alpha^2 = e, β=e\beta = e, and γ=0\gamma = 0 into the expression α2+β+γe\frac{\alpha^2 + \beta + \gamma}{e}. This gives $\frac{e+e+0}{e} = \frac{2e}{e} = 2.