Question
Question: Let \(\alpha \in R\) and the three vectors \(\overrightarrow{a}=\alpha \hat{i}+\hat{j}+3\hat{k}\), \...
Let α∈R and the three vectors a=αi^+j^+3k^, b=2i^+j^−αk^ and c=αi^−2j^+3k^. Then the set S=\left\\{ \alpha :\overrightarrow{a},\overrightarrow{b}\text{ and }\overrightarrow{c}\text{ are coplanar} \right\\}.
(A) is singleton
(B) contains only two numbers only one of which is positive
(C) contains exactly two positive numbers
(D) is empty
Solution
We start solving this problem by going through the concept of scalar triple product and vectors being coplanar. Then we find the scalar triple product of given vectors using the formula [a bc]=a1 b1 c1 a2b2c2a3b3c3. Then we equate it to zero to find the condition for which they are coplanar. So, we find the set S as it is a set of values of α for which the given vectors are coplanar.
Complete step-by-step answer :
First, let us go through the concept of scalar triple product.
For any three vectors a=a1i^+a2j^+a3k^, b=b1i^+b2j^+b3k^ and c=c1i^+c2j^+c3k^ scalar triple product is defined as
[a bc]=a1 b1 c1 a2b2c2a3b3c3
Now, let us go through the concept of coplanar. Any three vectors are said to be coplanar if they lie on the same plane. The three vectors a=a1i^+a2j^+a3k^, b=b1i^+b2j^+b3k^ and c=c1i^+c2j^+c3k^ are said to be coplanar if their scalar triple product is equal to zero, that is [a bc]=0.
So, now let us consider the scale triple product of given three vectors a=αi^+j^+3k^, b=2i^+j^−αk^ and c=αi^−2j^+3k^.
& \Rightarrow \left[ \begin{matrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\\ \end{matrix} \right]=\left| \begin{matrix} \alpha & 1 & 3 \\\ 2 & 1 & -\alpha \\\ \alpha & -2 & 3 \\\ \end{matrix} \right| \\\ & \Rightarrow \left[ \begin{matrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\\ \end{matrix} \right]=\alpha \left| \begin{matrix} 1 & -\alpha \\\ -2 & 3 \\\ \end{matrix} \right|-\left| \begin{matrix} 2 & -\alpha \\\ \alpha & 3 \\\ \end{matrix} \right|+3\left| \begin{matrix} 2 & 1 \\\ \alpha & -2 \\\ \end{matrix} \right| \\\ & \Rightarrow \left[ \begin{matrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\\ \end{matrix} \right]=\alpha \left( 3-2\alpha \right)-\left( 6+{{\alpha }^{2}} \right)+3\left( -4-\alpha \right) \\\ & \Rightarrow \left[ \begin{matrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\\ \end{matrix} \right]=3\alpha -2{{\alpha }^{2}}-6-{{\alpha }^{2}}-12-3\alpha \\\ & \Rightarrow \left[ \begin{matrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\\ \end{matrix} \right]=-3{{\alpha }^{2}}-18 \\\ \end{aligned}$$ Now, let us equate the obtained scalar triple product to zero as they are coplanar. $$\begin{aligned} & \Rightarrow \left[ \begin{matrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\\ \end{matrix} \right]=-3{{\alpha }^{2}}-18=0 \\\ & \Rightarrow -3{{\alpha }^{2}}-18=0 \\\ & \Rightarrow 3{{\alpha }^{2}}=-18 \\\ & \Rightarrow {{\alpha }^{2}}=-6 \\\ \end{aligned}$$ But square of any number is always positive. So, such an $$\alpha $$ does not exist. So, given vectors are not coplanar in any case. As S is a set such that $S=\left\\{ \alpha :\overrightarrow{a},\overrightarrow{b}\text{ and }\overrightarrow{c}\text{ are coplanar} \right\\}$, we get S is an empty set. **Note** : The major mistake one does while solving this question is after getting the value $${{\alpha }^{2}}=-6$$, most people forget that square of a real number is positive and note the answer as 2 possibilities and mark the answer as Option B. But we need to remember that the square of a real number is always positive.