Solveeit Logo

Question

Question: Let \[\alpha \in \left( 0,{\pi }/{2}\; \right)\] be fixed. If the integral \(\int{\dfrac{\tan x+\tan...

Let α(0,π/2  )\alpha \in \left( 0,{\pi }/{2}\; \right) be fixed. If the integral tanx+tanαtanxtanαdx=A(x)cos2α+B(x)sin2α+C\int{\dfrac{\tan x+\tan \alpha }{\tan x-\tan \alpha }dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C , where C is a constant of integration, then the functions A(x)A\left( x \right) and B(x)B\left( x \right) are respectively.
(A) xαx-\alpha and logecos(xα){{\log }_{e}}\left| \cos \left( x-\alpha \right) \right|
(B) x+αx+\alpha and logesin(xα){{\log }_{e}}\left| \sin \left( x-\alpha \right) \right|
(C) xαx-\alpha and logesin(xα){{\log }_{e}}\left| \sin \left( x-\alpha \right) \right|
(D) x+αx+\alpha and logesin(x+α){{\log }_{e}}\left| \sin \left( x+\alpha \right) \right|

Explanation

Solution

We start solving this problem by considering the given integral and we first write tanx\tan x in terms of sinx\sin x and cosx\cos x by using the formula tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. Then we solve the obtained expression using the formulae of sine of sum of two angles and sine of difference of two angles, that is, sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B and sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B .Then we convert the term x+αx+\alpha as (xα)+2α\left( x-\alpha \right)+2\alpha as all the options contain xαx-\alpha . After getting the new expression, we further solve the problem by using the formula cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} . Then we use the formula cotx=lnsinx+C\int{\cot x=\ln \left| \sin x \right|+C} . Then we finally convert the terms on the left hand side in terms of cos2α\cos 2\alpha and sin2α\sin 2\alpha to get the functions A(x)A\left( x \right) and B(x)B\left( x \right).

Complete step by step answer:
Let us consider the given equation,
tanx+tanαtanxtanαdx=A(x)cos2α+B(x)sin2α+C\int{\dfrac{\tan x+\tan \alpha }{\tan x-\tan \alpha }dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C
We convert tanx\tan x into the terms of sinx\sin x and cosx\cos x.
Let us consider the formula tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}.
By using the above formula, we get,
sinxcosx+sinαcosαsinxcosxsinαcosαdx=A(x)cos2α+B(x)sin2α+C  sinxcosα+sinαcosxcosx.cosαsinxcosαsinαcosxcosx.cosαdx=A(x)cos2α+B(x)sin2α+C  sinxcosα+sinαcosxsinxcosαsinαcosxdx=A(x)cos2α+B(x)sin2α+C \begin{aligned} & \int{\dfrac{\dfrac{\sin x}{\cos x}+\dfrac{\sin \alpha }{\cos \alpha }}{\dfrac{\sin x}{\cos x}-\dfrac{\sin \alpha }{\cos \alpha }}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ & \\\ & \int{\dfrac{\dfrac{\sin x\cos \alpha +\sin \alpha \cos x}{\cos x.\cos \alpha }}{\dfrac{\sin x\cos \alpha -\sin \alpha \cos x}{\cos x.\cos \alpha }}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ & \\\ & \int{\dfrac{\sin x\cos \alpha +\sin \alpha \cos x}{\sin x\cos \alpha -\sin \alpha \cos x}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ \end{aligned}
Now, let us consider the formulae,
sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B and
sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
So, by using the above formula, we get,
sin(x+α)sin(xα)dx=A(x)cos2α+B(x)sin2α+C\int{\dfrac{\sin \left( x+\alpha \right)}{\sin \left( x-\alpha \right)}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C
Now, let us write x+αx+\alpha as (xα)+2α\left( x-\alpha \right)+2\alpha .
So, we get,
sin((xα)+2α)sin(xα)dx=A(x)cos2α+B(x)sin2α+C\int{\dfrac{\sin \left( \left( x-\alpha \right)+2\alpha \right)}{\sin \left( x-\alpha \right)}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C
Let us again consider the formula, sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.
Using the above formula, we get,
(sin(xα)cos2α+cos(xα)sin2αsin(xα))dx=A(x)cos2α+B(x)sin2α+C (sin(xα)cos2αsin(xα)+cos(xα)sin2αsin(xα))dx=A(x)cos2α+B(x)sin2α+C \begin{aligned} & \int{\left( \dfrac{\sin \left( x-\alpha \right)\cos 2\alpha +\cos \left( x-\alpha \right)\sin 2\alpha }{\sin \left( x-\alpha \right)} \right)dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ & \int{\left( \dfrac{\sin \left( x-\alpha \right)\cos 2\alpha }{\sin \left( x-\alpha \right)}+\dfrac{\cos \left( x-\alpha \right)\sin 2\alpha }{\sin \left( x-\alpha \right)} \right)}dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ \end{aligned}
Now, let us consider the formula cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}.
By applying the above formula, we get,
(cos2α+cot(xα)sin2α)dx=A(x)cos2α+B(x)sin2α+C cos2αdx+cot(xα)sin2αdx=A(x)cos2α+B(x)sin2α+C x.cos2α+sin2αcot(xα)dx=A(x)cos2α+B(x)sin2α+C \begin{aligned} & \left( \int{\cos 2\alpha +\cot \left( x-\alpha \right)\sin 2\alpha } \right)dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ & \int{\cos 2\alpha }dx+\int{\cot \left( x-\alpha \right)\sin 2\alpha }dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ & x.\cos 2\alpha +\sin 2\alpha \int{\cot \left( x-\alpha \right)dx=}A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\\ \end{aligned}
Now, let us consider the formula cotx=lnsinx+C\int{\cot x=\ln \left| \sin x \right|+C}
By using the above formula, we get,
x.cos2α+(sin2α×lnsin(xα))+C=A(x)cos2α+B(x)sin2α+Cx.\cos 2\alpha +\left( \sin 2\alpha \times \ln \left| \sin \left( x-\alpha \right) \right| \right)+C=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C
Now, by comparing on both the sides, let us equate the corresponding terms, we get,
A(x)=xA\left( x \right)=x and B(x)=lnsin(xα)B\left( x \right)=\ln \left| \sin \left( x-\alpha \right) \right|

Therefore, the required answer is A(x)=xA\left( x \right)=x and B(x)=lnsin(xα)B\left( x \right)=\ln \left| \sin \left( x-\alpha \right) \right|

Note: The possibilities for making mistakes in this type of problems are, one may make mistakes and feel so clumsy while converting the given integral to an easiest form to solve. One should get an idea that we have to convert the term x+αx+\alpha as (xα)+2α\left( x-\alpha \right)+2\alpha while solving the integral.