Question
Question: Let \[\alpha \in \left( 0,{\pi }/{2}\; \right)\] be fixed. If the integral \(\int{\dfrac{\tan x+\tan...
Let α∈(0,π/2) be fixed. If the integral ∫tanx−tanαtanx+tanαdx=A(x)cos2α+B(x)sin2α+C , where C is a constant of integration, then the functions A(x) and B(x) are respectively.
(A) x−α and loge∣cos(x−α)∣
(B) x+α and loge∣sin(x−α)∣
(C) x−α and loge∣sin(x−α)∣
(D) x+α and loge∣sin(x+α)∣
Solution
We start solving this problem by considering the given integral and we first write tanx in terms of sinx and cosx by using the formula tanx=cosxsinx. Then we solve the obtained expression using the formulae of sine of sum of two angles and sine of difference of two angles, that is, sin(A+B)=sinAcosB+cosAsinB and sin(A−B)=sinAcosB−cosAsinB .Then we convert the term x+α as (x−α)+2α as all the options contain x−α . After getting the new expression, we further solve the problem by using the formula cotx=sinxcosx . Then we use the formula ∫cotx=ln∣sinx∣+C . Then we finally convert the terms on the left hand side in terms of cos2α and sin2α to get the functions A(x) and B(x).
Complete step by step answer:
Let us consider the given equation,
∫tanx−tanαtanx+tanαdx=A(x)cos2α+B(x)sin2α+C
We convert tanx into the terms of sinx and cosx.
Let us consider the formula tanx=cosxsinx.
By using the above formula, we get,
∫cosxsinx−cosαsinαcosxsinx+cosαsinαdx=A(x)cos2α+B(x)sin2α+C∫cosx.cosαsinxcosα−sinαcosxcosx.cosαsinxcosα+sinαcosxdx=A(x)cos2α+B(x)sin2α+C∫sinxcosα−sinαcosxsinxcosα+sinαcosxdx=A(x)cos2α+B(x)sin2α+C
Now, let us consider the formulae,
sin(A+B)=sinAcosB+cosAsinB and
sin(A−B)=sinAcosB−cosAsinB
So, by using the above formula, we get,
∫sin(x−α)sin(x+α)dx=A(x)cos2α+B(x)sin2α+C
Now, let us write x+α as (x−α)+2α.
So, we get,
∫sin(x−α)sin((x−α)+2α)dx=A(x)cos2α+B(x)sin2α+C
Let us again consider the formula, sin(A+B)=sinAcosB+cosAsinB.
Using the above formula, we get,
∫(sin(x−α)sin(x−α)cos2α+cos(x−α)sin2α)dx=A(x)cos2α+B(x)sin2α+C∫(sin(x−α)sin(x−α)cos2α+sin(x−α)cos(x−α)sin2α)dx=A(x)cos2α+B(x)sin2α+C
Now, let us consider the formula cotx=sinxcosx.
By applying the above formula, we get,
(∫cos2α+cot(x−α)sin2α)dx=A(x)cos2α+B(x)sin2α+C∫cos2αdx+∫cot(x−α)sin2αdx=A(x)cos2α+B(x)sin2α+Cx.cos2α+sin2α∫cot(x−α)dx=A(x)cos2α+B(x)sin2α+C
Now, let us consider the formula ∫cotx=ln∣sinx∣+C
By using the above formula, we get,
x.cos2α+(sin2α×ln∣sin(x−α)∣)+C=A(x)cos2α+B(x)sin2α+C
Now, by comparing on both the sides, let us equate the corresponding terms, we get,
A(x)=x and B(x)=ln∣sin(x−α)∣
Therefore, the required answer is A(x)=x and B(x)=ln∣sin(x−α)∣
Note: The possibilities for making mistakes in this type of problems are, one may make mistakes and feel so clumsy while converting the given integral to an easiest form to solve. One should get an idea that we have to convert the term x+α as (x−α)+2α while solving the integral.