Solveeit Logo

Question

Mathematics Question on Increasing and Decreasing Functions

Let α(0,1)\alpha \in(0,1) and β=loge(1α)\beta=\log _e(1-\alpha) Let Pn(x)=x+x22+x33++xnn,x(0,1)P_n(x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots+\frac{x^n}{n}, x \in(0,1) Then the integral 0αt501tdt\int\limits_0^\alpha \frac{t^{50}}{1-t} d t is equal to

A

P50(α)βP_{50}(\alpha)-\beta

B

(β+P50(α))-\left(\beta+P_{50}(\alpha)\right)

C

β+P50(a)\beta+P_{50}(a)

D

βP50(α)\beta-P_{50}(\alpha)

Answer

(β+P50(α))-\left(\beta+P_{50}(\alpha)\right)

Explanation

Solution

The correct answer is (B) : (β+P50(α))-\left(\beta+P_{50}(\alpha)\right)
0∫α​1−tt50−1+1​=−0∫α​(1+t+…..+t49)+0∫α​1−t1​dt
=−(50α50​+49α49​+…..+1α1​)+(−1ln(1−f)​)0α​
=−P50​(α)−ln(1−α)
=−P50​(α)−β