Question
Mathematics Question on Increasing and Decreasing Functions
Let α∈(0,1) and β=loge(1−α) Let Pn(x)=x+2x2+3x3+…+nxn,x∈(0,1) Then the integral 0∫α1−tt50dt is equal to
A
P50(α)−β
B
−(β+P50(α))
C
β+P50(a)
D
β−P50(α)
Answer
−(β+P50(α))
Explanation
Solution
The correct answer is (B) : −(β+P50(α))
0∫α1−tt50−1+1=−0∫α(1+t+…..+t49)+0∫α1−t1dt
=−(50α50+49α49+…..+1α1)+(−1ln(1−f))0α
=−P50(α)−ln(1−α)
=−P50(α)−β