Question
Mathematics Question on Matrices and Determinants
Let α∈(0,∞) and A=1 1 0201α12. If det(adj(2A−A⊤)⋅adj(A−2A⊤))=28, then (det(A))2 is equal to:
A
1
B
49
C
16
D
36
Answer
16
Explanation
Solution
Given:
det(adj(2A−AT)⋅adj(A−2AT))=28.
Recall the Property of Determinants:
For any square matrix B, we have:
det(adj(B))=(det(B))n−1for an n×n matrix.
Since A is a 3×3 matrix, we consider:
det(A−2AT)=±4,(det(A−2AT))2=16.
Matrix Calculations:
Consider:
A−2AT=1 1 0201α12−21 1 α201012=−1 −3 −2α00−1α−1−2.
Equating Determinants:
Given α=1, the determinant becomes: det(A)=−4,(det(A))2=16.