Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let α(0,)\alpha \in (0, \infty) and A=[12α 101 012]A = \begin{bmatrix} 1 & 2 & \alpha \\\ 1 & 0 & 1 \\\ 0 & 1 & 2 \end{bmatrix}. If det(adj(2AA)adj(A2A))=28\det(\text{adj}(2A - A^\top) \cdot \text{adj}(A - 2A^\top)) = 2^8, then (det(A))2(\det(A))^2 is equal to:

A

1

B

49

C

16

D

36

Answer

16

Explanation

Solution

Given:
det(adj(2AAT)adj(A2AT))=28.\det(\text{adj}(2A - A^T) \cdot \text{adj}(A - 2A^T)) = 2^8.
Recall the Property of Determinants:
For any square matrix BB, we have:
det(adj(B))=(det(B))n1for an n×n matrix.\det(\text{adj}(B)) = (\det(B))^{n-1} \quad \text{for an $n \times n$ matrix.}
Since AA is a 3×33 \times 3 matrix, we consider:
det(A2AT)=±4,(det(A2AT))2=16.\det(A - 2A^T) = \pm 4, \quad (\det(A - 2A^T))^2 = 16.

Matrix Calculations:
Consider:
A2AT=[12α 101 012]2[120 101 α12]=[10α 301 2α12].A - 2A^T = \begin{bmatrix} 1 & 2 & \alpha \\\ 1 & 0 & 1 \\\ 0 & 1 & 2 \end{bmatrix} - 2 \begin{bmatrix} 1 & 2 & 0 \\\ 1 & 0 & 1 \\\ \alpha & 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & \alpha \\\ -3 & 0 & -1 \\\ -2\alpha & -1 & -2 \end{bmatrix}.
Equating Determinants:
Given α=1\alpha = 1, the determinant becomes: det(A)=4,(det(A))2=16.\det(A) = -4, \quad (\det(A))^2 = 16.