Solveeit Logo

Question

Question: Let \(\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n}\) where \(n\in N,n>2\). Prove that for th...

Let α=cos2πn+isin2πn\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n} where nN,n>2n\in N,n>2. Prove that for the complex numbers z1,z2{{z}_{1}},{{z}_{2}} , $\sum\limits_{r=0}^{n-1}{{{\left| {{z}{1}}+{{\alpha }^{r}}{{z}{2}} \right|}^{2}}}=n{{\left| {{z}_{1}} \right|}^{2}}$$$$$

Explanation

Solution

The given expression α=cos2πn+isin2πn\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n} is the expression for nth{{n}^{\text{th}}} roots of unity. All the roots of unity with polynomial of degree nn are related by αn=1{{\alpha }^{n}}=1 and 1+α+α2+...+αn1=01+\alpha +{{\alpha }^{2}}+...+{{\alpha }^{n-1}}=0 . We use these relations when we apply the method induction to prove. We first prove the statement for n=3n=3, then assume for n=kn=k and the prove again for n=k+1.n=k+1.$$$$

Complete step by step answer:
We know that any complex number z=x+iyz=x+iy where xxand yy are real numbers . The modulus of a complex number zz is the distance from the origin in the complex plane which is defined as z=x±iy=x2+y2\left| z \right|=\left| x\pm iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}. We know that z2=zz{{\left| z \right|}^{2}}=z\overline{z}. We are asked to prove the statement ,
r=0n1z1+αrz22=n(z12+z22)\sum\limits_{r=0}^{n-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=n\left( {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} \right)
We are given two complex numbers z1,z2{{z}_{1}},{{z}_{2}}. We are given a complex number in Euler’s co-ordinates. We have for the natural number n>2n>2,
α=cos2πn+isin2πn\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n}
We know that above expression the expression for nth{{n}^{\text{th}}} roots of unit which means a solution of polynomial of equation xn=1{{x}^{n}}=1. We also know that αn=1{{\alpha }^{n}}=1 and 1+α+α2+...+αn1=01+\alpha +{{\alpha }^{2}}+...+{{\alpha }^{n-1}}=0. let us find z1+αrz22{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}} before we proceed. So we have

& {{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}} \\\ & =\left( {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right)\left( \overline{{{z}_{1}}}+{{\alpha }^{r}}\overline{{{z}_{2}}} \right) \\\ & ={{z}_{1}}\overline{{{z}_{1}}}+{{\alpha }^{2r}}{{z}_{2}}\overline{{{z}_{2}}}+{{\alpha }^{r}}\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right) \\\ & ={{\left| {{z}_{1}} \right|}^{2}}+{{\alpha }^{2r}}{{\left| {{z}_{2}} \right|}^{2}}+{{\alpha }^{r}}\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right) \\\ \end{aligned}$$ We shall prove the statement the statement by induction. So we take prove for the first value. Let us expand the left hand side of the statement $n=3$ . When we take $n=3$ we shall get the three cube roots unity as ${{\alpha }^{0}}=1,{{\alpha }^{1}}=\alpha ,{{\alpha }^{2}}$ then we have$1+\alpha +{{\alpha }^{2}}=0,{{\alpha }^{4}}={{\alpha }^{3}}\times \alpha =1\times \alpha =\alpha $. Now we use it and proceed , $$\begin{aligned} & \sum\limits_{r=0}^{3-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=\sum\limits_{r=0}^{2}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}} \\\ & ={{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{2}}{{z}_{2}} \right|}^{2}} \\\ & =3{{\left| {{z}_{1}} \right|}^{2}}+\left( {{\alpha }^{2\times 0}}+{{\alpha }^{2\times 1}}+{{\alpha }^{2\times 2}} \right){{\left| {{z}_{2}} \right|}^{2}}+\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right)\left( {{\alpha }^{0}}+{{\alpha }^{1}}+{{\alpha }^{2}} \right) \\\ & =3{{\left| {{z}_{1}} \right|}^{2}} \\\ \end{aligned}$$ So the statement is true for $n=3$. Now we shall assume the statement is true for $n=k$ . So we have $$\begin{aligned} & \sum\limits_{r=0}^{k-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=k{{\left| {{z}_{1}} \right|}^{2}} \\\ & \Rightarrow {{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+...+{{\left| {{z}_{1}}+{{\alpha }^{k-1}}{{z}_{2}} \right|}^{2}}=\left( k-1 \right){{\left| {{z}_{1}} \right|}^{2}} \\\ \end{aligned}$$ Now we have to prove for $n=k+1$ which means we have to prove ${{\sum\limits_{r=0}^{k}{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}}^{2}}=n{{\left| {{z}_{1}} \right|}^{2}}$. We have the ${{\left( k+1 \right)}^{\text{th}}}$ root as ${{\alpha }^{k}}=0$. We write the left hand side of the statement for $n=k+1$ and expand using truth of the statement for $n=k$ , $$\begin{aligned} & \sum\limits_{r=0}^{k}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}} \\\ & ={{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+...+{{\left| {{z}_{1}}+{{\alpha }^{k-1}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{k}}{{z}_{2}} \right|}^{2}} \\\ & =\left( k-1 \right){{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{1}} \right|}^{2}}\left( \because {{\alpha }^{k}}=0 \right) \\\ & =k{{\left| {{z}_{1}} \right|}^{2}} \\\ \end{aligned}$$ Now we have the statement is true for $n=3$ and if assume the statement is true for $n=k$ it implies that the statement is true for $n=k+1$. So by induction the statement is true for all $n\in N.$ Hence proved.$$$$ **Note:** We note that a complex number can also be written in Euler’s form as $z=r\cos \theta +ir\sin \theta =r{{e}^{i\theta }}$ where $r$ is the modulus and $\theta $ is the angle $z$ makes when joined with origin, otherwise known as argument $\theta =\arg \left( z \right)$. So the given $\alpha $ can be written $\alpha ={{e}^{i\dfrac{2\pi }{n}}}$.