Solveeit Logo

Question

Mathematics Question on Matrices

Let αβ0\alpha \beta \neq 0 and A=[βα3 ααβ βα2α]A = \begin{bmatrix} \beta & \alpha & 3 \\\ \alpha & \alpha & \beta \\\ -\beta & \alpha & 2\alpha \end{bmatrix}. If B=[3α93α α72α 2α52β]B = \begin{bmatrix} 3\alpha & -9 & 3\alpha \\\ -\alpha & 7 & -2\alpha \\\ -2\alpha & 5 & -2\beta \end{bmatrix} is the matrix of cofactors of the elements of A, then det(AB) is equal to:

A

343

B

125

C

64

D

216

Answer

216

Explanation

Solution

Given that BB is the matrix of cofactors of AA, we use the relationship:

AB=det(A)I3,AB = \det(A) \cdot I_3, where I3I_3 is the 3×33 \times 3 identity matrix. Therefore: det(AB)=det(A)3.\det(AB) = \det(A)^3.

Step 1: Equating the Cofactor Condition

We know: (2α23α)=α.(2\alpha^2 - 3\alpha) = \alpha.

Rearranging: 2α23αα=0    2α24α=0.2\alpha^2 - 3\alpha - \alpha = 0 \implies 2\alpha^2 - 4\alpha = 0.

Since α0\alpha \neq 0, we get: α=2.\alpha = 2.

Step 2: Substitute and Find β\beta

Using the relation: 2α2αβ=3α,2\alpha^2 - \alpha\beta = 3\alpha, substitute α=2\alpha = 2: 2222β=32    82β=6    2β=2    β=1.2 \cdot 2^2 - 2\beta = 3 \cdot 2 \implies 8 - 2\beta = 6 \implies 2\beta = 2 \implies \beta = 1.

Step 3: Calculate det(A)\det(A)

Substitute α=2\alpha = 2 and β=1\beta = 1 into matrix AA: A=[123 221 124].A = \begin{bmatrix} 1 & 2 & 3 \\\ 2 & 2 & 1 \\\ -1 & 2 & 4 \end{bmatrix}.

The determinant of AA is: det(A)=121 24221 14+322 12.\det(A) = 1 \cdot \begin{vmatrix} 2 & 1 \\\ 2 & 4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 1 \\\ -1 & 4 \end{vmatrix} + 3 \cdot \begin{vmatrix} 2 & 2 \\\ -1 & 2 \end{vmatrix}.

Calculating each minor: 21 24=2412=6,\begin{vmatrix} 2 & 1 \\\ 2 & 4 \end{vmatrix} = 2 \cdot 4 - 1 \cdot 2 = 6, 21 14=241(1)=9,\begin{vmatrix} 2 & 1 \\\ -1 & 4 \end{vmatrix} = 2 \cdot 4 - 1 \cdot (-1) = 9, 22 12=222(1)=6.\begin{vmatrix} 2 & 2 \\\ -1 & 2 \end{vmatrix} = 2 \cdot 2 - 2 \cdot (-1) = 6.

Thus: det(A)=1629+36=618+18=6.\det(A) = 1 \cdot 6 - 2 \cdot 9 + 3 \cdot 6 = 6 - 18 + 18 = 6.

Step 4: Calculate det(AB)\det(AB)

Since: det(AB)=det(A)3=63=216.\det(AB) = \det(A)^3 = 6^3 = 216.

Therefore, the correct answer is Option (4).