Question
Mathematics Question on Matrices
Let αβ=0 and A=β α −βααα3β2α. If B=3α −α −2α−9753α−2α−2β is the matrix of cofactors of the elements of A, then det(AB) is equal to:
343
125
64
216
216
Solution
Given that B is the matrix of cofactors of A, we use the relationship:
AB=det(A)⋅I3, where I3 is the 3×3 identity matrix. Therefore: det(AB)=det(A)3.
Step 1: Equating the Cofactor Condition
We know: (2α2−3α)=α.
Rearranging: 2α2−3α−α=0⟹2α2−4α=0.
Since α=0, we get: α=2.
Step 2: Substitute and Find β
Using the relation: 2α2−αβ=3α, substitute α=2: 2⋅22−2β=3⋅2⟹8−2β=6⟹2β=2⟹β=1.
Step 3: Calculate det(A)
Substitute α=2 and β=1 into matrix A: A=1 2 −1222314.
The determinant of A is: det(A)=1⋅2 214−2⋅2 −114+3⋅2 −122.
Calculating each minor: 2 214=2⋅4−1⋅2=6, 2 −114=2⋅4−1⋅(−1)=9, 2 −122=2⋅2−2⋅(−1)=6.
Thus: det(A)=1⋅6−2⋅9+3⋅6=6−18+18=6.
Step 4: Calculate det(AB)
Since: det(AB)=det(A)3=63=216.
Therefore, the correct answer is Option (4).