Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

Let α,βN\alpha, \beta \in \mathbb{N} be roots of the equation x270x+λ=0x^2 - 70x + \lambda = 0, where λ2,λ3N\frac{\lambda}{2}, \frac{\lambda}{3} \notin \mathbb{N}. If λ\lambda assumes the minimum possible value, then (α1+β1)(λ+35)αβ\frac{\left( \sqrt{\alpha - 1} + \sqrt{\beta - 1} \right)(\lambda + 35)}{|\alpha - \beta|} is equal to____.

Answer

Analyze α\alpha and β\beta:

Since α+β=70\alpha + \beta = 70, assume possible integer values for α\alpha and β\beta that satisfy αβ=λ\alpha \beta = \lambda and check divisibility conditions. A suitable pair is α=5\alpha = 5 and β=65\beta = 65, giving λ=5×65=325\lambda = 5 \times 65 = 325.

Verification:

Check that 3252N\frac{325}{2} \notin \mathbb{N} and 3253N\frac{325}{3} \notin \mathbb{N}, satisfying the divisibility conditions.

Calculate the Required Expression:

Substitute α=5\alpha = 5, β=65\beta = 65, and λ=325\lambda = 325:

α1+β1(λ+35)αβ=51+651×(325+35)565\frac{\sqrt{\alpha - 1} + \sqrt{\beta - 1}(\lambda + 35)}{|\alpha - \beta|} = \frac{\sqrt{5 - 1} + \sqrt{65 - 1} \times (325 + 35)}{|5 - 65|}

Simplifying this gives:

=4+8×36060=12×36060=60= \frac{\sqrt{4 + 8 \times 360}}{60} = \frac{\sqrt{12 \times 360}}{60} = 60