Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let α,β,γ,δZ\alpha, \beta, \gamma, \delta \in \mathbb{Z} and let A(α,β)A (\alpha, \beta), B(1,0)B (1, 0), C(γ,δ)C (\gamma, \delta), and D(1,2)D (1, 2) be the vertices of a parallelogram ABCDABCD. If AB=10AB = \sqrt{10} and the points AA and CC lie on the line 3y=2x+13y = 2x + 1, then 2(α+β+γ+δ)2 (\alpha + \beta + \gamma + \delta) is equal to

A

10

B

5

C

12

D

8

Answer

8

Explanation

Solution

Let EE be the midpoint of the diagonals. By the midpoint formula:

α+γ2=1+12=1    α+γ=2\frac{\alpha + \gamma}{2} = \frac{1 + 1}{2} = 1 \quad \implies \quad \alpha + \gamma = 2

Similarly:

β+δ2=2+02=1    β+δ=2\frac{\beta + \delta}{2} = \frac{2 + 0}{2} = 1 \quad \implies \quad \beta + \delta = 2

Therefore:

2(α+β+γ+δ)=2(2+2)=82(\alpha + \beta + \gamma + \delta) = 2(2 + 2) = 8