Solveeit Logo

Question

Question: Let $\alpha, \beta, \gamma, \delta$ be the roots of $x^4 - x^3 - x^2 - 1 = 0$. Also consider $p(x) =...

Let α,β,γ,δ\alpha, \beta, \gamma, \delta be the roots of x4x3x21=0x^4 - x^3 - x^2 - 1 = 0. Also consider p(x)=x6x5x3x2xp(x) = x^6 - x^5 - x^3 - x^2 - x. Then the value of p(α)+p(β)+p(γ)+p(δ)p(\alpha) + p(\beta) + p(\gamma) + p(\delta) cannot be

A

4

B

5

C

6

D

7

Answer

6

Explanation

Solution

Let the given polynomial be f(x)=x4x3x21f(x) = x^4 - x^3 - x^2 - 1. The roots of f(x)=0f(x) = 0 are α,β,γ,δ\alpha, \beta, \gamma, \delta. Thus, for any root r{α,β,γ,δ}r \in \{\alpha, \beta, \gamma, \delta\}, we have r4r3r21=0r^4 - r^3 - r^2 - 1 = 0, which implies r4=r3+r2+1r^4 = r^3 + r^2 + 1.

We are given the polynomial p(x)=x6x5x3x2xp(x) = x^6 - x^5 - x^3 - x^2 - x. We want to evaluate p(r)p(r) for a root rr of f(x)=0f(x) = 0. We can reduce the powers of rr using the relation r4=r3+r2+1r^4 = r^3 + r^2 + 1.

First, let's find r5r^5 and r6r^6 in terms of lower powers of rr: r5=rr4=r(r3+r2+1)=r4+r3+rr^5 = r \cdot r^4 = r(r^3 + r^2 + 1) = r^4 + r^3 + r. Substitute r4=r3+r2+1r^4 = r^3 + r^2 + 1: r5=(r3+r2+1)+r3+r=2r3+r2+r+1r^5 = (r^3 + r^2 + 1) + r^3 + r = 2r^3 + r^2 + r + 1.

r6=rr5=r(2r3+r2+r+1)=2r4+r3+r2+rr^6 = r \cdot r^5 = r(2r^3 + r^2 + r + 1) = 2r^4 + r^3 + r^2 + r. Substitute r4=r3+r2+1r^4 = r^3 + r^2 + 1: r6=2(r3+r2+1)+r3+r2+r=2r3+2r2+2+r3+r2+r=3r3+3r2+r+2r^6 = 2(r^3 + r^2 + 1) + r^3 + r^2 + r = 2r^3 + 2r^2 + 2 + r^3 + r^2 + r = 3r^3 + 3r^2 + r + 2.

Now substitute the expressions for r6r^6 and r5r^5 into p(r)p(r): p(r)=r6r5r3r2rp(r) = r^6 - r^5 - r^3 - r^2 - r p(r)=(3r3+3r2+r+2)(2r3+r2+r+1)r3r2rp(r) = (3r^3 + 3r^2 + r + 2) - (2r^3 + r^2 + r + 1) - r^3 - r^2 - r Group terms by powers of rr: p(r)=(321)r3+(311)r2+(111)r+(21)p(r) = (3 - 2 - 1)r^3 + (3 - 1 - 1)r^2 + (1 - 1 - 1)r + (2 - 1) p(r)=0r3+1r21r+1p(r) = 0r^3 + 1r^2 - 1r + 1 p(r)=r2r+1p(r) = r^2 - r + 1.

So, for each root α,β,γ,δ\alpha, \beta, \gamma, \delta, we have: p(α)=α2α+1p(\alpha) = \alpha^2 - \alpha + 1 p(β)=β2β+1p(\beta) = \beta^2 - \beta + 1 p(γ)=γ2γ+1p(\gamma) = \gamma^2 - \gamma + 1 p(δ)=δ2δ+1p(\delta) = \delta^2 - \delta + 1

We need to find the sum S=p(α)+p(β)+p(γ)+p(δ)S = p(\alpha) + p(\beta) + p(\gamma) + p(\delta). S=(α2α+1)+(β2β+1)+(γ2γ+1)+(δ2δ+1)S = (\alpha^2 - \alpha + 1) + (\beta^2 - \beta + 1) + (\gamma^2 - \gamma + 1) + (\delta^2 - \delta + 1) S=(α2+β2+γ2+δ2)(α+β+γ+δ)+(1+1+1+1)S = (\alpha^2 + \beta^2 + \gamma^2 + \delta^2) - (\alpha + \beta + \gamma + \delta) + (1 + 1 + 1 + 1) S=Σα2Σα+4S = \Sigma \alpha^2 - \Sigma \alpha + 4.

Now, we use Vieta's formulas for the polynomial f(x)=x4x3x2+0x1=0f(x) = x^4 - x^3 - x^2 + 0x - 1 = 0. Sum of roots: Σα=α+β+γ+δ=(1)/1=1\Sigma \alpha = \alpha + \beta + \gamma + \delta = -(-1)/1 = 1. Sum of products of roots taken two at a time: Σαβ=αβ+αγ+αδ+βγ+βδ+γδ=1/1=1\Sigma \alpha\beta = \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = -1/1 = -1.

The sum of squares of the roots is given by the formula Σα2=(Σα)22Σαβ\Sigma \alpha^2 = (\Sigma \alpha)^2 - 2 \Sigma \alpha\beta. Σα2=(1)22(1)=1+2=3\Sigma \alpha^2 = (1)^2 - 2(-1) = 1 + 2 = 3.

Substitute these values into the expression for SS: S=Σα2Σα+4S = \Sigma \alpha^2 - \Sigma \alpha + 4 S=31+4S = 3 - 1 + 4 S=2+4=6S = 2 + 4 = 6.

The value of p(α)+p(β)+p(γ)+p(δ)p(\alpha) + p(\beta) + p(\gamma) + p(\delta) is 6.