Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let (α,β,γ)(\alpha, \beta, \gamma) be the point (8,5,7)(8, 5, 7) in the line x12=y+13=z25\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{5}. Then α+β+γ\alpha + \beta + \gamma is equal to

A

16

B

18

C

14

D

20

Answer

14

Explanation

Solution

Let P(8,5,7)P(8, 5, 7), a=2,3,5\vec{a} = \langle 2, 3, 5 \rangle, F(2λ+1,3λ1,5λ+2)F(2\lambda + 1, 3\lambda - 1, 5\lambda + 2).

The vector PF\overrightarrow{PF} is:

PF=2λ7,3λ6,5λ5.\overrightarrow{PF} = \langle 2\lambda - 7, 3\lambda - 6, 5\lambda - 5 \rangle.

Since PFa=0\overrightarrow{PF} \cdot \vec{a} = 0, we have:

(2λ7)(2)+(3λ6)(3)+(5λ5)(5)=0.(2\lambda - 7)(2) + (3\lambda - 6)(3) + (5\lambda - 5)(5) = 0.

Simplify:

4λ14+9λ18+25λ25=0,4\lambda - 14 + 9\lambda - 18 + 25\lambda - 25 = 0, 38λ57=0    λ=32.38\lambda - 57 = 0 \implies \lambda = \frac{3}{2}.

The coordinates of FF are:

F=(2λ+1,3λ1,5λ+2)=(4,72,192).F = (2\lambda + 1, 3\lambda - 1, 5\lambda + 2) = \left( 4, \frac{7}{2}, \frac{19}{2} \right).

The coordinates of Q(α,β,γ)Q(\alpha, \beta, \gamma) are:

α+82=2λ+1,β+52=3λ1,γ+72=5λ+2.\frac{\alpha + 8}{2} = 2\lambda + 1, \quad \frac{\beta + 5}{2} = 3\lambda - 1, \quad \frac{\gamma + 7}{2} = 5\lambda + 2.

Solving each equation:

α=4λ6,β=6λ7,γ=10λ3.\alpha = 4\lambda - 6, \quad \beta = 6\lambda - 7, \quad \gamma = 10\lambda - 3.

Substitute λ=32\lambda = \frac{3}{2}:

α=4(32)6=66=0,\alpha = 4\left(\frac{3}{2}\right) - 6 = 6 - 6 = 0, β=6(32)7=97=2,\beta = 6\left(\frac{3}{2}\right) - 7 = 9 - 7 = 2, γ=10(32)3=153=12.\gamma = 10\left(\frac{3}{2}\right) - 3 = 15 - 3 = 12.

Finally, compute α+β+γ\alpha + \beta + \gamma:

α+β+γ=0+2+12=14.\alpha + \beta + \gamma = 0 + 2 + 12 = 14.

Final Answer: 14