Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let (α,β,γ)(\alpha, \beta, \gamma) be the mirror image of the point (2,3,5)(2, 3, 5) in the line x12=y23=z34\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4}. Then 2α+3β+4γ2\alpha + 3\beta + 4\gamma is equal to

A

32

B

33

C

31

D

34

Answer

33

Explanation

Solution

Let P(2,3,5)P(2, 3, 5) be the point and R(α,β,γ)R(\alpha, \beta, \gamma) its mirror image in the line

x12=y23=z34.\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4}.

Since RR is the mirror image of PP, the line segment PRPR is perpendicular to the direction ratios of the line (2,3,4)(2, 3, 4).

Therefore, PR(2,3,4)\overrightarrow{PR} \perp (2, 3, 4).

So, PR(2,3,4)=0\overrightarrow{PR} \cdot (2, 3, 4) = 0.

Let PR=(α2,β3,γ5)\overrightarrow{PR} = (\alpha - 2, \beta - 3, \gamma - 5).

Now,

(α2,β3,γ5)(2,3,4)=0(\alpha - 2, \beta - 3, \gamma - 5) \cdot (2, 3, 4) = 0

which gives:

2(α2)+3(β3)+4(γ5)=02(\alpha - 2) + 3(\beta - 3) + 4(\gamma - 5) = 0     2α+3β+4γ=4+9+20=33\implies 2\alpha + 3\beta + 4\gamma = 4 + 9 + 20 = 33

Thus, the answer is:

33