Solveeit Logo

Question

Mathematics Question on Horizontal and vertical lines

Let α,β,γ\alpha, \beta, \gamma be the foot of perpendicular from the point (1,2,3)(1, 2, 3) on the line x+35=y12=z+43\frac{x + 3}{5} = \frac{y - 1}{2} = \frac{z + 4}{3}. Then 19(α+β+γ)19(\alpha + \beta + \gamma) is equal to:

A

102

B

101

C

99

D

100

Answer

101

Explanation

Solution

Given the line x+35=y12=z+43\frac{x + 3}{5} = \frac{y - 1}{2} = \frac{z + 4}{3}, we can parametrize it as:
x=5t3,y=2t+1,z=3t4x = 5t - 3, \quad y = 2t + 1, \quad z = 3t - 4

Let P(α,β,γ)=(5t3,2t+1,3t4)P(\alpha, \beta, \gamma) = (5t - 3, 2t + 1, 3t - 4) be the foot of the perpendicular from A=(1,2,3)A = (1, 2, 3) to the line. The vector AP\overrightarrow{AP} is:

AP=(5t4,2t1,3t7)\overrightarrow{AP} = (5t - 4, 2t - 1, 3t - 7)

Since AP\overrightarrow{AP} is perpendicular to the line, we set up the dot product with the direction ratios (5,2,3)(5, 2, 3):

(5t4)×5+(2t1)×2+(3t7)×3=0(5t - 4) \times 5 + (2t - 1) \times 2 + (3t - 7) \times 3 = 0

Expanding and solving:

38t43=0t=433838t - 43 = 0 \Rightarrow t = \frac{43}{38}

Substitute t=4338t = \frac{43}{38} to find α\alpha, β\beta, and γ\gamma:

α=5t3=10138,β=2t+1=6219,γ=3t4=2338\alpha = 5t - 3 = \frac{101}{38}, \quad \beta = 2t + 1 = \frac{62}{19}, \quad \gamma = 3t - 4 = \frac{-23}{38}

Then,

α+β+γ=10138+124382338=20238=10119\alpha + \beta + \gamma = \frac{101}{38} + \frac{124}{38} - \frac{23}{38} = \frac{202}{38} = \frac{101}{19}

Finally,

19(α+β+γ)=10119(\alpha + \beta + \gamma) = 101