Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

Let α,β,γ\alpha, \beta, \gamma and δ\delta are four positive real number such that their product is unity, then the least value of (1+α)(1+β)(1+γ)(1+δ)(1+\alpha)(1+\beta)(1+\gamma)(1+\delta) is:

A

6

B

16

C

0

D

32

Answer

16

Explanation

Solution

It is given that the product of α,β,γ\alpha, \beta, \gamma and δ\delta is unity that is αβγδ=1.\alpha \beta \gamma \delta=1 . Now consider (1+α)(1+β)(1+γ)(1+δ)(1+\alpha)(1+\beta)(1+\gamma)(1+\delta) as follows: (1+α)(1+β)(1+γ)(1+δ)(1+\alpha)(1+\beta)(1+\gamma)(1+\delta) =1+α+β+γ+δ+αβ+αγ+αδ+βγ+βδ+γδ+αβγ+βγδ+αγδ+αβδ+αβγδ=1+\alpha+\beta+\gamma+\delta+\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta+\alpha \beta \gamma+\beta \gamma \delta+\alpha \gamma \delta+\alpha \beta \delta+\alpha \beta \gamma \delta =1+(α+β+γ+δ)+(αβ+αγ+αδ+βγ+βδ+γδ)+(αβγ+βγδ+αγδ+αβδ)+αβγδ=1+(\alpha+\beta+\gamma+\delta)+(\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta)+(\alpha \beta \gamma+\beta \gamma \delta+\alpha \gamma \delta+\alpha \beta \delta)+\alpha \beta \gamma \delta =1+(α+β+γ+δ)+(αβ+αγ+αδ+1αδ+1αγ+1αβ)+(1δ+1α+1β+1γ)+1=1+(\alpha+\beta+\gamma+\delta)+\left(\alpha \beta+\alpha \gamma+\alpha \delta+\frac{1}{\alpha \delta}+\frac{1}{\alpha \gamma}+\frac{1}{\alpha \beta}\right)+\left(\frac{1}{\delta}+\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right)+1 αβγδ=1\ldots \ldots\\{\because \alpha \beta \gamma \delta=1\\} =2+(α+1α)+(β+1β)+(γ+1γ)+(δ+1δ)+(αβ+1αβ)+(αγ+1αγ)+(αδ+1αδ)= 2+\left(\alpha+\frac{1}{\alpha}\right)+\left(\beta+\frac{1}{\beta}\right)+\left(\gamma+\frac{1}{\gamma}\right)+\left(\delta+\frac{1}{\delta}\right)+\left(\alpha \beta+\frac{1}{\alpha \beta}\right)+\left(\alpha \gamma+\frac{1}{\alpha \gamma}\right)+\left(\alpha \delta+\frac{1}{\alpha \delta}\right) 2+2+2+2+2+2+2+2\geq 2+2+2+2+2+2+2+2 \left\\{\because x +\frac{1}{ x } \geq 2 \right. for \left. x \geq 0\right\\} 16\geq 16 Hence, the least value of (1+α)(1+β)(1+γ)(1+δ)(1+\alpha)(1+\beta)(1+\gamma)(1+\delta) is 1616 .