Question
Mathematics Question on Sets
Let αβγ=45; α,β,γ∈R. If x(α,1,2)+y(1,β,2)+z(2,3,γ)=(0,0,0) for some x,y,z∈R, xyz=0, then 6α+4β+γ is equal to ______.
Answer
Given αβγ=45, α,β,γ∈R,
x(α,1,2)+y(1,β,2)+z(2,3,γ)=(0,0,0).
Expanding, we get:
xα+y+2z=0, x+yβ+3z=0, 2x+2y+zγ=0.
Since xyz=0, the determinant of the coefficient matrix must be zero for a non-trivial solution:
α 1 21β322γ=0.
Expanding the determinant:
αβ 32γ−11 22γ+21 2β3=0.
Calculating each minor:
β 32γ=βγ−6, 1 22γ=γ−6, 1 2β3=3−2β.
Substituting:
α(βγ−6)−(γ−6)+2(3−2β)=0.
Simplify:
αβγ−6α−γ+6+6−4β=0.
Since αβγ=45:
45−6α−γ+12−4β=0.
Rearranging:
6α+4β+γ=55.