Question
Mathematics Question on Functions
Let α,β be the roots of the equation x2−4λx+5=0 and α, γ be the roots of the equation x2−(32+23)x+7+3λ3=0. If β+γ=32 then (α+2β+γ)2 is equal to _______.
Answer
∵ α, β are roots of x2−4λx+5=0
α+β=4λ and αβ=5
Also, α, γ are roots of
x2−(32+23)x+7+33λ=0,λ>0
∴$$\alpha + \gamma = 3\sqrt{2} + 2\sqrt{3}, αγ=7+33λ
∵ α is common root
∴ \alpha^2 - 4\lambda\alpha + 5 = 0$$ …(i) and
α2−(32+23)α+7+33λ=0…(ii)
From (i)–(ii): we get
α=32+23−4λ2+33λ
∵ β+γ=32
∴$$4\lambda + 3\sqrt{2} + 2\sqrt{3} - 2\alpha = 3\sqrt{2}
⇒ 32=4λ+32+23−32+23−4λ4+63λ
⇒ 8λ2+3(3−22)λ−4−36=0
∴ λ=1662−33±9(11−46)+32(4+36)
∴ λ=2
∴ (α+2β+γ)2=(α+β+β+γ)2=(42+32)2=(72)2=98