Solveeit Logo

Question

Mathematics Question on Functions

Let α,β\alpha, \beta be the roots of the equation x24λx+5=0x^2 - 4\lambda x + 5 = 0 and α, γ be the roots of the equation x2(32+23)x+7+3λ3=0x^2 - (3\sqrt{2} + 2\sqrt{3})x + 7 + 3\lambda\sqrt{3} = 0. If β+γ=32\beta + \gamma = 3\sqrt{2} then (α+2β+γ)2(\alpha + 2\beta + \gamma)^2 is equal to _______.

Answer

∵ α, β are roots of x24λx+5=0x^2 - 4\lambda x + 5 = 0
α+β=4λα + β = 4λ and αβ=5αβ = 5

Also, α, γ are roots of
x2(32+23)x+7+33λ=0,λ>0x^2 - (3\sqrt{2} + 2\sqrt{3})x + 7 + 3\sqrt{3}\lambda = 0, \quad \lambda > 0
∴$$\alpha + \gamma = 3\sqrt{2} + 2\sqrt{3}, αγ=7+33λ\alpha\gamma = 7 + 3\sqrt{3}\lambda
αα is common root

\alpha^2 - 4\lambda\alpha + 5 = 0$$ …(i) and
α2(32+23)α+7+33λ=0\alpha^2 - (3\sqrt{2} + 2\sqrt{3})\alpha + 7 + 3\sqrt{3}\lambda = 0…(ii)
From (i)(ii):(i) – (ii): we get

α=2+33λ32+234λ\alpha = \frac{2 + 3\sqrt{3}\lambda}{3\sqrt{2} + 2\sqrt{3} - 4\lambda}
β+γ=32\beta + \gamma = 3\sqrt{2}
∴$$4\lambda + 3\sqrt{2} + 2\sqrt{3} - 2\alpha = 3\sqrt{2}

32=4λ+32+234+63λ32+234λ3\sqrt{2} = 4\lambda + 3\sqrt{2} + 2\sqrt{3} - \frac{4 + 6\sqrt{3}\lambda}{3\sqrt{2} + 2\sqrt{3} - 4\lambda}
8λ2+3(322)λ436=08\lambda^2 + 3(\sqrt{3} - 2\sqrt{2})\lambda - 4 - 3\sqrt{6} = 0

λ=6233±9(1146)+32(4+36)16\lambda = \frac{6\sqrt{2} - 3\sqrt{3} \pm \sqrt{9(11-4\sqrt{6}) + 32(4+3\sqrt{6})}}{16}
λ=2λ=2
(α+2β+γ)2=(α+β+β+γ)2=(42+32)2=(72)2=98(\alpha + 2\beta + \gamma)^2 = (\alpha + \beta + \beta + \gamma)^2 = (4\sqrt{2} + 3\sqrt{2})^2 = (7\sqrt{2})^2 = 98