Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Let α\alpha, β\beta be the roots of the equation x2px+r=0x^2-px+r=0 and α2,2β\frac{\alpha}{2},2\beta be the roots of the equation x2qx+r=0.x^2-qx+r=0. Then, the value of r is

A

29(pq)(2qp)\frac{2}{9}(p-q)(2q-p)

B

29(qp)(2pq)\frac{2}{9}(q-p)(2p-q)

C

29(q2p)(2qp)\frac{2}{9}(q-2p)(2q-p)

D

29(2pq)(2qp)\frac{2}{9}(2p-q)(2q-p)

Answer

29(2pq)(2qp)\frac{2}{9}(2p-q)(2q-p)

Explanation

Solution

The equation x2px+r=0x^2-px+r=0 has roots α\alpha, β\beta and the equation x2qx+r=0x^2-qx+r=0 has roots α2,2β.\frac{\alpha}{2},2\beta.
r=αβ\Rightarrow\, \, \, \, \, \, \, r=\alpha\beta and α+β=p, \alpha+\beta=p,
and α2+2β=qβ=2qp3\frac{\alpha}{2}+2\beta=q\Rightarrow\beta=\frac{2q-p}{3} and α=2(2pq)3 \alpha=\frac{2(2p-q)}{3}
αβ=r=29(2qp)(2pq)\Rightarrow\, \, \, \, \, \, \, \alpha\beta=r=\frac{2}{9}(2q-p)(2p-q)