Question
Mathematics Question on Quadratic Equations
Let α,β be the roots of the equation
x2+22x−1=0.
The quadratic equation, whose roots are α4+β4 and 101(α6+β6), is:
x2−190x+9466=0
x2−195x+9466=0
x2−195x+9506=0
x2−180x+9506=0
x2−195x+9506=0
Solution
Step 1: Roots of the quadratic equation Given:
x2+22x−1=0.
The sum of the roots:
α+β=−coefficient of x2coefficient of x=−22.
The product of the roots:
αβ=coefficient of x2constant term=−1.
Step 2: Compute α4+β4 Using the identity:
α4+β4=(α2+β2)2−2(αβ)2.
First, calculate α2+β2:
α2+β2=(α+β)2−2αβ.
Substitute α+β=−22 and αβ=−1:
α2+β2=(−22)2−2(−1).
α2+β2=8+2=10.
Now substitute into α4+β4:
α4+β4=(10)2−2(−1)2.
α4+β4=100−2=98.
Step 3: Compute α6+β6 Using the identity:
α6+β6=(α3+β3)2−2(α3β3).
First, calculate α3+β3 using:
α3+β3=(α+β)((α2+β2)−αβ).
Substitute α+β=−22, α2+β2=10, and αβ=−1:
α3+β3=(−22)(10−(−1)).
α3+β3=(−22)(11)=−222.
Now calculate α3β3:
α3β3=(αβ)3=(−1)3=−1.
Substitute into α6+β6:
α6+β6=(−222)2−2(−1).
α6+β6=(484⋅2)+2=968+2=970.
Thus:
101(α6+β6)=10970=97.
Step 4: Quadratic equation The roots of the quadratic equation are α4+β4=98 and:
101(α6+β6)=97.
The quadratic equation is:
x2−(sum of roots)x+(product of roots)=0.
Sum of roots:
98+97=195.
Product of roots:
98⋅97=9506.
Thus, the quadratic equation is:
x2−195x+9506=0.
Final Answer: Option (3).