Solveeit Logo

Question

Question: Let $\alpha, \beta$ be roots of $x^2 + \sqrt{2}x - 8 = 0$. If $U_n = \alpha^n + \beta^n$, then $\fra...

Let α,β\alpha, \beta be roots of x2+2x8=0x^2 + \sqrt{2}x - 8 = 0. If Un=αn+βnU_n = \alpha^n + \beta^n, then U10+2U92U8\frac{U_{10} + \sqrt{2}U_9}{2U_8} is equal to ____.

Answer

4

Explanation

Solution

Let α,β\alpha, \beta be the roots of the quadratic equation x2+2x8=0x^2 + \sqrt{2}x - 8 = 0. Since α\alpha and β\beta are roots of the equation, they must satisfy the equation. Thus, we have: α2+2α8=0    α2+2α=8(1)\alpha^2 + \sqrt{2}\alpha - 8 = 0 \implies \alpha^2 + \sqrt{2}\alpha = 8 \quad (1) β2+2β8=0    β2+2β=8(2)\beta^2 + \sqrt{2}\beta - 8 = 0 \implies \beta^2 + \sqrt{2}\beta = 8 \quad (2)

We are given Un=αn+βnU_n = \alpha^n + \beta^n. We need to find the value of U10+2U92U8\frac{U_{10} + \sqrt{2}U_9}{2U_8}.

Substitute the definition of UnU_n into the expression: U10+2U92U8=(α10+β10)+2(α9+β9)2(α8+β8)\frac{U_{10} + \sqrt{2}U_9}{2U_8} = \frac{(\alpha^{10} + \beta^{10}) + \sqrt{2}(\alpha^9 + \beta^9)}{2(\alpha^8 + \beta^8)}

Expand the numerator: =α10+β10+2α9+2β92(α8+β8)= \frac{\alpha^{10} + \beta^{10} + \sqrt{2}\alpha^9 + \sqrt{2}\beta^9}{2(\alpha^8 + \beta^8)}

Rearrange the terms in the numerator by grouping terms involving α\alpha and β\beta: =(α10+2α9)+(β10+2β9)2(α8+β8)= \frac{(\alpha^{10} + \sqrt{2}\alpha^9) + (\beta^{10} + \sqrt{2}\beta^9)}{2(\alpha^8 + \beta^8)}

Factor out α8\alpha^8 from the first parenthesis and β8\beta^8 from the second parenthesis in the numerator: =α8(α2+2α)+β8(β2+2β)2(α8+β8)= \frac{\alpha^8(\alpha^2 + \sqrt{2}\alpha) + \beta^8(\beta^2 + \sqrt{2}\beta)}{2(\alpha^8 + \beta^8)}

Now, substitute the relations from (1) and (2) into this expression: =α8(8)+β8(8)2(α8+β8)= \frac{\alpha^8(8) + \beta^8(8)}{2(\alpha^8 + \beta^8)}

Factor out 8 from the numerator: =8(α8+β8)2(α8+β8)= \frac{8(\alpha^8 + \beta^8)}{2(\alpha^8 + \beta^8)}

Since the roots α,β\alpha, \beta are real and non-zero (as the constant term is -8), α8+β8\alpha^8 + \beta^8 will not be zero. Thus, we can cancel the term (α8+β8)(\alpha^8 + \beta^8) from the numerator and denominator: =82= \frac{8}{2} =4= 4