Solveeit Logo

Question

Mathematics Question on Quadratic Equations

Let α,β\alpha, \beta be roots of x2+2x8=0x^2 + \sqrt{2}x - 8 = 0. If Un=αn+βnU_n = \alpha^n + \beta^n, then U10+12U92U8\frac{U_{10} + \sqrt{12} U_9}{2 U_8} is equal to ________.

Answer

We have:
U10=α10+β10andU9=α9+β9U_{10} = \alpha^{10} + \beta^{10} \quad \text{and} \quad U_9 = \alpha^9 + \beta^9
Then:
U10+12U92U8=α10+β10+2(α9+β9)2(α8+β8)\frac{U_{10} + \sqrt{12} U_9}{2 U_8} = \frac{\alpha^{10} + \beta^{10} + \sqrt{2} (\alpha^9 + \beta^9)}{2 \left( \alpha^8 + \beta^8 \right)}
Further simplifying, we get:
=α8(α2+2α)+β8(β2+2β)2(α8+β8)= \frac{\alpha^8 \left( \alpha^2 + \sqrt{2} \alpha \right) + \beta^8 \left( \beta^2 + \sqrt{2} \beta \right)}{2 \left( \alpha^8 + \beta^8 \right)}
Grouping terms, we have:
=8α8+8β82(α8+β8)=4= \frac{8 \alpha^8 + 8 \beta^8}{2 \left( \alpha^8 + \beta^8 \right)} = 4