Solveeit Logo

Question

Mathematics Question on Functions

Let α,β\alpha, \beta and γ\gamma be three positive real numbers Let f(x)=αx5+βx3+γx,xRf ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R and g:RRg: R \rightarrow R be such that g(f(x))=xg(f(x))=x for all xRx \in R If a1,a2,a3,,ana_1, a_2, a_3, \ldots, a_n be in arithmetic progression with mean zero, then the value of f(g(1ni=1nf(ai)))f\left(g\left(\frac{1}{n} \displaystyle\sum_{i=1}^n f\left(a_i\right)\right)\right)is equal to :

A

0

B

3

C

9

D

27

Answer

0

Explanation

Solution

The correct option is (A) : 0
Consider a case when α = β = 0 then
f(x)=yxf(x) = yx
g(x)=xyg(x)=\frac{x}{y}
1ni=1nf(ai)yn(a1+a2+....+an)\frac{1}{n}\sum{^{n}_{i=1}}f(a_i)⇒\frac{y}{n}(a_1+a_2+....+a_n)
=0=0
f(g(0))f(0)⇒f(g(0))⇒f(0)
0⇒0