Question
Question: Let $\alpha$ be the angle between the lines whose direction cosines satisfy the equations $l+m-n=0$ ...
Let α be the angle between the lines whose direction cosines satisfy the equations l+m−n=0 and l+m2−n2=0. Then the value of sin4α+cos4α is

1/2
Solution
The direction cosines (l,m,n) satisfy l+m−n=0 and l+m2−n2=0. From the first equation, n=l+m. Substituting into the second equation: l+m2−(l+m)2=0 l+m2−(l2+2lm+m2)=0 l−l2−2lm=0 l(1−l−2m)=0
This implies either l=0 or 1−l−2m=0.
Case 1: l=0. If l=0, then n=0+m=m. Using the property l2+m2+n2=1: 02+m2+m2=1 2m2=1⟹m=±21. If m=21, then n=21. Direction cosines are (0,21,21). If m=−21, then n=−21. Direction cosines are (0,−21,−21). These two sets of direction cosines define one line. Let's pick a direction vector for Line 1: v1=(0,21,21).
Case 2: 1−l−2m=0. This implies l=1−2m. Then n=l+m=(1−2m)+m=1−m. Using the property l2+m2+n2=1: (1−2m)2+m2+(1−m)2=1 (1−4m+4m2)+m2+(1−2m+m2)=1 6m2−6m+2=1 6m2−6m+1=0. The roots for m are m=126±36−4(6)(1)=126±12=126±23=63±3.
Let m1=63+3. l1=1−2m1=1−2(63+3)=1−33+3=33−(3+3)=−33. n1=1−m1=1−63+3=66−(3+3)=63−3. Direction cosines: (−33,63+3,63−3).
Let m2=63−3. l2=1−2m2=1−2(63−3)=1−33−3=33−(3−3)=33. n2=1−m2=1−63−3=66−(3−3)=63+3. Direction cosines: (33,63−3,63+3).
The problem states "the lines", implying two lines. The direction cosines from l=0 define one line. The direction cosines from 1−l−2m=0 define another line. We can pick one representative vector for the second line. Let's pick v2=(−33,63+3,63−3).
The angle α between the lines is given by cosα=∣v1∣∣v2∣v1⋅v2. Since these are direction cosines, their magnitudes are 1. cosα=(0)(−33)+(21)(63+3)+(21)(63−3) cosα=21(63+3+63−3) cosα=21(66)=21.
Now we need to find sin4α+cos4α. cos2α=(21)2=21. sin2α=1−cos2α=1−21=21. sin4α=(sin2α)2=(21)2=41. cos4α=(cos2α)2=(21)2=41. sin4α+cos4α=41+41=42=21.
