Solveeit Logo

Question

Question: Let $\alpha$ be the angle between the lines whose direction cosines satisfy the equations $l+m-n=0$ ...

Let α\alpha be the angle between the lines whose direction cosines satisfy the equations l+mn=0l+m-n=0 and l+m2n2=0l+m^2-n^2=0. Then the value of sin4α+cos4α\sin^4\alpha + \cos^4\alpha is

Answer

1/2

Explanation

Solution

The direction cosines (l,m,n)(l, m, n) satisfy l+mn=0l+m-n=0 and l+m2n2=0l+m^2-n^2=0. From the first equation, n=l+mn = l+m. Substituting into the second equation: l+m2(l+m)2=0l + m^2 - (l+m)^2 = 0 l+m2(l2+2lm+m2)=0l + m^2 - (l^2 + 2lm + m^2) = 0 ll22lm=0l - l^2 - 2lm = 0 l(1l2m)=0l(1 - l - 2m) = 0

This implies either l=0l=0 or 1l2m=01-l-2m=0.

Case 1: l=0l=0. If l=0l=0, then n=0+m=mn = 0+m = m. Using the property l2+m2+n2=1l^2+m^2+n^2=1: 02+m2+m2=10^2 + m^2 + m^2 = 1 2m2=1    m=±122m^2 = 1 \implies m = \pm \frac{1}{\sqrt{2}}. If m=12m = \frac{1}{\sqrt{2}}, then n=12n = \frac{1}{\sqrt{2}}. Direction cosines are (0,12,12)(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}). If m=12m = -\frac{1}{\sqrt{2}}, then n=12n = -\frac{1}{\sqrt{2}}. Direction cosines are (0,12,12)(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}). These two sets of direction cosines define one line. Let's pick a direction vector for Line 1: v1=(0,12,12)\mathbf{v_1} = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).

Case 2: 1l2m=01-l-2m=0. This implies l=12ml = 1-2m. Then n=l+m=(12m)+m=1mn = l+m = (1-2m)+m = 1-m. Using the property l2+m2+n2=1l^2+m^2+n^2=1: (12m)2+m2+(1m)2=1(1-2m)^2 + m^2 + (1-m)^2 = 1 (14m+4m2)+m2+(12m+m2)=1(1 - 4m + 4m^2) + m^2 + (1 - 2m + m^2) = 1 6m26m+2=16m^2 - 6m + 2 = 1 6m26m+1=06m^2 - 6m + 1 = 0. The roots for mm are m=6±364(6)(1)12=6±1212=6±2312=3±36m = \frac{6 \pm \sqrt{36 - 4(6)(1)}}{12} = \frac{6 \pm \sqrt{12}}{12} = \frac{6 \pm 2\sqrt{3}}{12} = \frac{3 \pm \sqrt{3}}{6}.

Let m1=3+36m_1 = \frac{3+\sqrt{3}}{6}. l1=12m1=12(3+36)=13+33=3(3+3)3=33l_1 = 1 - 2m_1 = 1 - 2(\frac{3+\sqrt{3}}{6}) = 1 - \frac{3+\sqrt{3}}{3} = \frac{3 - (3+\sqrt{3})}{3} = -\frac{\sqrt{3}}{3}. n1=1m1=13+36=6(3+3)6=336n_1 = 1 - m_1 = 1 - \frac{3+\sqrt{3}}{6} = \frac{6 - (3+\sqrt{3})}{6} = \frac{3-\sqrt{3}}{6}. Direction cosines: (33,3+36,336)(-\frac{\sqrt{3}}{3}, \frac{3+\sqrt{3}}{6}, \frac{3-\sqrt{3}}{6}).

Let m2=336m_2 = \frac{3-\sqrt{3}}{6}. l2=12m2=12(336)=1333=3(33)3=33l_2 = 1 - 2m_2 = 1 - 2(\frac{3-\sqrt{3}}{6}) = 1 - \frac{3-\sqrt{3}}{3} = \frac{3 - (3-\sqrt{3})}{3} = \frac{\sqrt{3}}{3}. n2=1m2=1336=6(33)6=3+36n_2 = 1 - m_2 = 1 - \frac{3-\sqrt{3}}{6} = \frac{6 - (3-\sqrt{3})}{6} = \frac{3+\sqrt{3}}{6}. Direction cosines: (33,336,3+36)(\frac{\sqrt{3}}{3}, \frac{3-\sqrt{3}}{6}, \frac{3+\sqrt{3}}{6}).

The problem states "the lines", implying two lines. The direction cosines from l=0l=0 define one line. The direction cosines from 1l2m=01-l-2m=0 define another line. We can pick one representative vector for the second line. Let's pick v2=(33,3+36,336)\mathbf{v_2} = (-\frac{\sqrt{3}}{3}, \frac{3+\sqrt{3}}{6}, \frac{3-\sqrt{3}}{6}).

The angle α\alpha between the lines is given by cosα=v1v2v1v2\cos\alpha = \frac{\mathbf{v_1} \cdot \mathbf{v_2}}{|\mathbf{v_1}| |\mathbf{v_2}|}. Since these are direction cosines, their magnitudes are 1. cosα=(0)(33)+(12)(3+36)+(12)(336)\cos\alpha = (0)(-\frac{\sqrt{3}}{3}) + (\frac{1}{\sqrt{2}})(\frac{3+\sqrt{3}}{6}) + (\frac{1}{\sqrt{2}})(\frac{3-\sqrt{3}}{6}) cosα=12(3+36+336)\cos\alpha = \frac{1}{\sqrt{2}} \left( \frac{3+\sqrt{3}}{6} + \frac{3-\sqrt{3}}{6} \right) cosα=12(66)=12\cos\alpha = \frac{1}{\sqrt{2}} \left( \frac{6}{6} \right) = \frac{1}{\sqrt{2}}.

Now we need to find sin4α+cos4α\sin^4\alpha + \cos^4\alpha. cos2α=(12)2=12\cos^2\alpha = (\frac{1}{\sqrt{2}})^2 = \frac{1}{2}. sin2α=1cos2α=112=12\sin^2\alpha = 1 - \cos^2\alpha = 1 - \frac{1}{2} = \frac{1}{2}. sin4α=(sin2α)2=(12)2=14\sin^4\alpha = (\sin^2\alpha)^2 = (\frac{1}{2})^2 = \frac{1}{4}. cos4α=(cos2α)2=(12)2=14\cos^4\alpha = (\cos^2\alpha)^2 = (\frac{1}{2})^2 = \frac{1}{4}. sin4α+cos4α=14+14=24=12\sin^4\alpha + \cos^4\alpha = \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}.