Solveeit Logo

Question

Question: Let $\alpha$ be the angle between the lines whose direction cosines satisfy the equations $l+m-n=0$ ...

Let α\alpha be the angle between the lines whose direction cosines satisfy the equations l+mn=0l+m-n=0 and l+m2n2=0l+m^2-n^2=0. Then the value of sin4αcos4α\frac{\sin^4\alpha}{\cos^4\alpha} is

A

1

B

1/2

C

2

D

1/4

Answer

1

Explanation

Solution

The direction cosines (l,m,n)(l, m, n) satisfy l+mn=0l+m-n=0 and l+m2n2=0l+m^2-n^2=0. From the first equation, n=l+mn=l+m. Substituting this into the second equation: l+m2(l+m)2=0l+m^2-(l+m)^2=0 l+m2(l2+2lm+m2)=0l+m^2-(l^2+2lm+m^2)=0 ll22lm=0l-l^2-2lm=0 l(1l2m)=0l(1-l-2m)=0 This implies l=0l=0 or 1l2m=01-l-2m=0.

Case 1: l=0l=0. From l+mn=0l+m-n=0, we get mn=0    n=mm-n=0 \implies n=m. Using l2+m2+n2=1l^2+m^2+n^2=1, we have 02+m2+m2=1    2m2=1    m=±120^2+m^2+m^2=1 \implies 2m^2=1 \implies m = \pm \frac{1}{\sqrt{2}}. This gives direction cosines (0,12,12)(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) and (0,12,12)(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), which define one line. Let d1=(0,12,12)\vec{d}_1 = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).

Case 2: 1l2m=0    l=12m1-l-2m=0 \implies l=1-2m. From l+mn=0l+m-n=0, we get n=l+m=(12m)+m=1mn=l+m = (1-2m)+m = 1-m. Using l2+m2+n2=1l^2+m^2+n^2=1: (12m)2+m2+(1m)2=1(1-2m)^2+m^2+(1-m)^2=1 14m+4m2+m2+12m+m2=11-4m+4m^2+m^2+1-2m+m^2=1 6m26m+2=16m^2-6m+2=1 6m26m+1=06m^2-6m+1=0. The roots for mm are m=6±362412=6±1212=6±2312=3±36m = \frac{6 \pm \sqrt{36-24}}{12} = \frac{6 \pm \sqrt{12}}{12} = \frac{6 \pm 2\sqrt{3}}{12} = \frac{3 \pm \sqrt{3}}{6}. Let m1=3+36m_1 = \frac{3+\sqrt{3}}{6} and m2=336m_2 = \frac{3-\sqrt{3}}{6}. For m1m_1: l1=12m1=12(3+36)=13+33=3333=33=13l_1 = 1-2m_1 = 1-2(\frac{3+\sqrt{3}}{6}) = 1-\frac{3+\sqrt{3}}{3} = \frac{3-3-\sqrt{3}}{3} = -\frac{\sqrt{3}}{3} = -\frac{1}{\sqrt{3}}. n1=1m1=13+36=6336=336n_1 = 1-m_1 = 1-\frac{3+\sqrt{3}}{6} = \frac{6-3-\sqrt{3}}{6} = \frac{3-\sqrt{3}}{6}. So, d2=(13,3+36,336)\vec{d}_2 = (-\frac{1}{\sqrt{3}}, \frac{3+\sqrt{3}}{6}, \frac{3-\sqrt{3}}{6}). For m2m_2: l2=12m2=12(336)=1333=33+33=33=13l_2 = 1-2m_2 = 1-2(\frac{3-\sqrt{3}}{6}) = 1-\frac{3-\sqrt{3}}{3} = \frac{3-3+\sqrt{3}}{3} = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}. n2=1m2=1336=63+36=3+36n_2 = 1-m_2 = 1-\frac{3-\sqrt{3}}{6} = \frac{6-3+\sqrt{3}}{6} = \frac{3+\sqrt{3}}{6}. So, d3=(13,336,3+36)\vec{d}_3 = (\frac{1}{\sqrt{3}}, \frac{3-\sqrt{3}}{6}, \frac{3+\sqrt{3}}{6}).

The problem implies there are two lines. The most natural interpretation is that the two lines are d2\vec{d}_2 and d3\vec{d}_3 derived from 1l2m=01-l-2m=0. Let's find the angle α\alpha between d2\vec{d}_2 and d3\vec{d}_3. cosα=d2d3=(13)(13)+(3+36)(336)+(336)(3+36)\cos \alpha = |\vec{d}_2 \cdot \vec{d}_3| = |(-\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}}) + (\frac{3+\sqrt{3}}{6})(\frac{3-\sqrt{3}}{6}) + (\frac{3-\sqrt{3}}{6})(\frac{3+\sqrt{3}}{6})| cosα=13+9336+9336=13+636+636=13+16+16=13+13=0\cos \alpha = |-\frac{1}{3} + \frac{9-3}{36} + \frac{9-3}{36}| = |-\frac{1}{3} + \frac{6}{36} + \frac{6}{36}| = |-\frac{1}{3} + \frac{1}{6} + \frac{1}{6}| = |-\frac{1}{3} + \frac{1}{3}| = 0. This means α=π2\alpha = \frac{\pi}{2}. If α=π2\alpha = \frac{\pi}{2}, then sinα=1\sin\alpha=1 and cosα=0\cos\alpha=0. The expression sin4αcos4α\frac{\sin^4\alpha}{\cos^4\alpha} is undefined.

Alternatively, if the two lines are d1\vec{d}_1 and d2\vec{d}_2 (or d1\vec{d}_1 and d3\vec{d}_3). Let's find the angle α\alpha between d1\vec{d}_1 and d2\vec{d}_2. cosα=d1d2=(0)(13)+(12)(3+36)+(12)(336)\cos \alpha = |\vec{d}_1 \cdot \vec{d}_2| = |(0)(-\frac{1}{\sqrt{3}}) + (\frac{1}{\sqrt{2}})(\frac{3+\sqrt{3}}{6}) + (\frac{1}{\sqrt{2}})(\frac{3-\sqrt{3}}{6})| cosα=12(3+3+336)=12(66)=12\cos \alpha = |\frac{1}{\sqrt{2}}(\frac{3+\sqrt{3}+3-\sqrt{3}}{6})| = |\frac{1}{\sqrt{2}}(\frac{6}{6})| = \frac{1}{\sqrt{2}}. So, α=π4\alpha = \frac{\pi}{4}. Then sinα=12\sin \alpha = \frac{1}{\sqrt{2}} and cosα=12\cos \alpha = \frac{1}{\sqrt{2}}. sin4αcos4α=(1/2)4(1/2)4=1\frac{\sin^4\alpha}{\cos^4\alpha} = \frac{(1/\sqrt{2})^4}{(1/\sqrt{2})^4} = 1. This matches one of the options and avoids an undefined result.