Question
Question: Let $\alpha$ be the angle between the lines whose direction cosines satisfy the equations $l+m-n=0$ ...
Let α be the angle between the lines whose direction cosines satisfy the equations l+m−n=0 and l+m2−n2=0. Then the value of cos4αsin4α is

1
1/2
2
1/4
1
Solution
The direction cosines (l,m,n) satisfy l+m−n=0 and l+m2−n2=0. From the first equation, n=l+m. Substituting this into the second equation: l+m2−(l+m)2=0 l+m2−(l2+2lm+m2)=0 l−l2−2lm=0 l(1−l−2m)=0 This implies l=0 or 1−l−2m=0.
Case 1: l=0. From l+m−n=0, we get m−n=0⟹n=m. Using l2+m2+n2=1, we have 02+m2+m2=1⟹2m2=1⟹m=±21. This gives direction cosines (0,21,21) and (0,−21,−21), which define one line. Let d1=(0,21,21).
Case 2: 1−l−2m=0⟹l=1−2m. From l+m−n=0, we get n=l+m=(1−2m)+m=1−m. Using l2+m2+n2=1: (1−2m)2+m2+(1−m)2=1 1−4m+4m2+m2+1−2m+m2=1 6m2−6m+2=1 6m2−6m+1=0. The roots for m are m=126±36−24=126±12=126±23=63±3. Let m1=63+3 and m2=63−3. For m1: l1=1−2m1=1−2(63+3)=1−33+3=33−3−3=−33=−31. n1=1−m1=1−63+3=66−3−3=63−3. So, d2=(−31,63+3,63−3). For m2: l2=1−2m2=1−2(63−3)=1−33−3=33−3+3=33=31. n2=1−m2=1−63−3=66−3+3=63+3. So, d3=(31,63−3,63+3).
The problem implies there are two lines. The most natural interpretation is that the two lines are d2 and d3 derived from 1−l−2m=0. Let's find the angle α between d2 and d3. cosα=∣d2⋅d3∣=∣(−31)(31)+(63+3)(63−3)+(63−3)(63+3)∣ cosα=∣−31+369−3+369−3∣=∣−31+366+366∣=∣−31+61+61∣=∣−31+31∣=0. This means α=2π. If α=2π, then sinα=1 and cosα=0. The expression cos4αsin4α is undefined.
Alternatively, if the two lines are d1 and d2 (or d1 and d3). Let's find the angle α between d1 and d2. cosα=∣d1⋅d2∣=∣(0)(−31)+(21)(63+3)+(21)(63−3)∣ cosα=∣21(63+3+3−3)∣=∣21(66)∣=21. So, α=4π. Then sinα=21 and cosα=21. cos4αsin4α=(1/2)4(1/2)4=1. This matches one of the options and avoids an undefined result.
