Solveeit Logo

Question

Question: Let $\alpha$ be the angle between the lines whose direction cosines satisfy the equations $l + m - n...

Let α\alpha be the angle between the lines whose direction cosines satisfy the equations l+mn=0l + m - n = 0 and l2+m2n2=0l^2 + m^2 - n^2 = 0. Then the value of sin4α+cos4αsin^4 \alpha + cos^4 \alpha is:

A

1/8

B

3/8

C

5/8

D

7/8

Answer

5/8

Explanation

Solution

The direction cosines (l,m,n)(l, m, n) satisfy l+mn=0l+m-n=0 and l2+m2n2=0l^2+m^2-n^2=0. Substituting n=l+mn=l+m into the second equation gives 2lm=0-2lm=0, so l=0l=0 or m=0m=0. If l=0l=0, then n=mn=m. With l2+m2+n2=1l^2+m^2+n^2=1, we get (0,±1/2,±1/2)(0, \pm 1/\sqrt{2}, \pm 1/\sqrt{2}). If m=0m=0, then n=ln=l. With l2+m2+n2=1l^2+m^2+n^2=1, we get (±1/2,0,±1/2)(\pm 1/\sqrt{2}, 0, \pm 1/\sqrt{2}). These define two lines. Let their direction cosines be (0,1/2,1/2)(0, 1/\sqrt{2}, 1/\sqrt{2}) and (1/2,0,1/2)(1/\sqrt{2}, 0, 1/\sqrt{2}). The cosine of the angle α\alpha between them is cosα=(0)(1/2)+(1/2)(0)+(1/2)(1/2)=1/2\cos \alpha = (0)(1/\sqrt{2}) + (1/\sqrt{2})(0) + (1/\sqrt{2})(1/\sqrt{2}) = 1/2. Then sin2α=1cos2α=1(1/2)2=3/4\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - (1/2)^2 = 3/4. sin4α+cos4α=(sin2α)2+(cos2α)2=(3/4)2+(1/2)2=9/16+1/4=9/16+4/16=13/16\sin^4 \alpha + \cos^4 \alpha = (\sin^2 \alpha)^2 + (\cos^2 \alpha)^2 = (3/4)^2 + (1/2)^2 = 9/16 + 1/4 = 9/16 + 4/16 = 13/16.

Let's recheck the calculation. cosα=1/2\cos \alpha = 1/2. sinα=1(1/2)2=3/2\sin \alpha = \sqrt{1 - (1/2)^2} = \sqrt{3}/2. sin4α=(3/2)4=(3/4)2=9/16\sin^4 \alpha = (\sqrt{3}/2)^4 = (3/4)^2 = 9/16. cos4α=(1/2)4=1/16\cos^4 \alpha = (1/2)^4 = 1/16. sin4α+cos4α=9/16+1/16=10/16=5/8\sin^4 \alpha + \cos^4 \alpha = 9/16 + 1/16 = 10/16 = 5/8.