Question
Question: Let $\alpha$ be the angle between the lines whose direction cosines satisfy the equations $l + m - n...
Let α be the angle between the lines whose direction cosines satisfy the equations l+m−n=0 and l2+m2−n2=0. Then the value of sin4α+cos4α is:

1/8
3/8
5/8
7/8
5/8
Solution
The direction cosines (l,m,n) satisfy l+m−n=0 and l2+m2−n2=0. Substituting n=l+m into the second equation gives −2lm=0, so l=0 or m=0. If l=0, then n=m. With l2+m2+n2=1, we get (0,±1/2,±1/2). If m=0, then n=l. With l2+m2+n2=1, we get (±1/2,0,±1/2). These define two lines. Let their direction cosines be (0,1/2,1/2) and (1/2,0,1/2). The cosine of the angle α between them is cosα=(0)(1/2)+(1/2)(0)+(1/2)(1/2)=1/2. Then sin2α=1−cos2α=1−(1/2)2=3/4. sin4α+cos4α=(sin2α)2+(cos2α)2=(3/4)2+(1/2)2=9/16+1/4=9/16+4/16=13/16.
Let's recheck the calculation. cosα=1/2. sinα=1−(1/2)2=3/2. sin4α=(3/2)4=(3/4)2=9/16. cos4α=(1/2)4=1/16. sin4α+cos4α=9/16+1/16=10/16=5/8.
