Solveeit Logo

Question

Mathematics Question on Quadratic Equations

Let α\alpha be a root of the equation (ac)x2+(ba)x+(cb)=0(a-c) x^2+(b-a) x+(c-b)=0where a,b,ca , b , c are distinct real numbers such that the matrix [α2α1 111 abc]\begin{bmatrix}\alpha^2 & \alpha & 1 \\\ 1 & 1 & 1 \\\ a & b & c\end{bmatrix}is singular Then, the value of (ac)2(ba)(cb)+(ba)2(ac)(cb)+(cb)2(ac)(ba)\frac{(a-c)^2}{(b-a)(c-b)}+\frac{(b-a)^2}{(a-c)(c-b)}+\frac{(c-b)^2}{(a-c)(b-a)} is

A

6

B

3

C

9

D

12

Answer

3

Explanation

Solution

The correct answer is (B) : 3
Δ=0=||⇒a21a?a1b?11c?||?
⇒a2(c-b)-a(c-a)+(b-a)=0
It is singular when a=1
(b-a)(c-b)(a-c)2?+(a-c)(c-b)(b-a)2?+(a-c)(b-a)(c-b)2?
(a-b)(b-c)(c-a)(a-b)3+(b-c)3+(c-a)3?
=3(a-b)(b-c)(c-a)(a-b)(b-c)(c-a)?=3