Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let α\alpha be a positive real number. Let f:RRf: R \rightarrow R and g:(α,)Rg:(\alpha, \infty) \rightarrow R be the functions defined by
f(x)=sin(πx12) and g(x)=2loge(xα)loge(exeα)f(x)=\sin \left(\frac{\pi x}{12}\right) \text { and } g(x)=\frac{2 \log _e(\sqrt{ x }-\sqrt{\alpha})}{\log _e\left( e ^{\sqrt{x}}- e ^{\sqrt{\alpha}}\right)}
Then the value of limxα+f(g(x))\displaystyle\lim _{x \rightarrow \alpha^{+}} f( g ( x )) is _______.

Answer

limxα+f(g(x))=f(limxα+g(x))\lim\limits_{x→α^+}f(g(x))=f(\lim\limits_{x→α^+}g(x))
Now, limxα+g(x)=limxα+2ln(xα)ln(exeα)\lim\limits_{x→α^+}g(x)=\lim\limits_{x→α^+}\frac{2ln(\sqrt{x}-\sqrt{\alpha})}{ln(e^{\sqrt{x}}-e^{\sqrt{α}})}
Now, By applying D'L Hospital
limxα++2.1xα.12x1ex=eα.ex.12x\lim\limits_{x→α^+}+\frac{2.\frac{1}{\sqrt{x-\sqrt{\alpha}}}.\frac{1}{2\sqrt{x}}}{\frac{1}{e^{\sqrt{x}}=e^{\sqrt{\alpha}}}.e^{\sqrt{x}}.\frac{1}{2\sqrt{x}}}
limxα+2(exeα)ex(xα)\lim\limits_{x→α^+}\frac{2(e^{\sqrt{x}}-e^{\sqrt{\alpha}})}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}
limxα+2eα(exα1)ex(xα)=2\lim\limits_{x→α^+}\frac{2e^{\sqrt{\alpha}}(e^{\sqrt{x}-\sqrt{\alpha}}-1)}{e^{\sqrt{x}}(\sqrt{x}-\sqrt{\alpha})}=2
Now, f(x) = sinπx12\sin\frac{\pi x}{12} given
Hence f(2) = sinπ(2)12\sin\frac{\pi(2)}{12}
=sinπ6=\sin\frac{\pi}{6}
=12=0.5=\frac{1}{2}=0.5
So, the correct answer is 0.5