Solveeit Logo

Question

Mathematics Question on Differential equations

Let α\alpha be a non-zero real number. Suppose f:RRf : \mathbb{R} \to \mathbb{R} is a differentiable function such that f(0)=2f(0) = 2 and limxf(x)=1.\lim_{x \to \infty} f(x) = 1.If f(x)=αf(x)+3f'(x) = \alpha f(x) + 3, for all xRx \in \mathbb{R}, then f(log2)f(-\log 2) is equal to ________ .

A

3

B

5

C

9

D

7

Answer

9

Explanation

Solution

Given the differential equation:

f(x)=αf(x)+3f'(x) = \alpha f(x) + 3

This is a first-order linear differential equation. We can solve it using an integrating factor (IF).

The integrating factor is given by:

IF=eαdx=eαxIF = e^{\int \alpha dx} = e^{\alpha x}

Multiplying the differential equation by the integrating factor:

eαxf(x)=αeαxf(x)+3eαxe^{\alpha x} f'(x) = \alpha e^{\alpha x} f(x) + 3e^{\alpha x}

This simplifies to:

ddx(eαxf(x))=3eαx\frac{d}{dx} \left(e^{\alpha x} f(x)\right) = 3e^{\alpha x}

Integrating both sides with respect to xx:

eαxf(x)=3eαxdx=3eαxα+Ce^{\alpha x} f(x) = \int 3e^{\alpha x} dx = \frac{3e^{\alpha x}}{\alpha} + C

Thus, the general solution is:

f(x)=3α+Ceαxf(x) = \frac{3}{\alpha} + Ce^{-\alpha x}

Using the initial condition f(0)=2f(0) = 2:

2=3α+C2 = \frac{3}{\alpha} + C C=23αC = 2 - \frac{3}{\alpha}

Given that limxf(x)=1\lim_{x \to \infty} f(x) = 1:

limx(3α+(23α)eαx)=1\lim_{x \to \infty} \left(\frac{3}{\alpha} + \left(2 - \frac{3}{\alpha}\right)e^{-\alpha x}\right) = 1

Since eαx0e^{-\alpha x} \to 0 as xx \to \infty, we have:

3α=1    α=3\frac{3}{\alpha} = 1 \implies \alpha = 3

Substituting α=3\alpha = 3 back into the solution:

f(x)=1+(21)e3x=1+e3xf(x) = 1 + (2 - 1)e^{-3x} = 1 + e^{-3x}

Now, we need to find f(log22)f(-\log_2 2):

f(log22)=1+e3(log22)=1+e3log22=1+(23)=1+8=9f(-\log_2 2) = 1 + e^{-3(-\log_2 2)} = 1 + e^{3\log_2 2} = 1 + (2^3) = 1 + 8 = 9

Conclusion: f(log22)=9f(-\log_2 2) = 9.