Solveeit Logo

Question

Question: Let \(\alpha \) and \(\beta \) be two non-zero real numbers such that \(2\left( \cos \beta -\cos \al...

Let α\alpha and β\beta be two non-zero real numbers such that 2(cosβcosα)+cosαcosβ=12\left( \cos \beta -\cos \alpha \right)+\cos \alpha \cos \beta =1. Then which of the following is/are correct?
(a) 3tan(α2)+tan(β2)=0\sqrt{3}\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)=0
(b) 3tan(α2)tan(β2)=0\sqrt{3}\tan \left( \dfrac{\alpha }{2} \right)-\tan \left( \dfrac{\beta }{2} \right)=0
(c) tan(α2)+3tan(β2)=0\tan \left( \dfrac{\alpha }{2} \right)+\sqrt{3}\tan \left( \dfrac{\beta }{2} \right)=0
(d) tan(α2)3tan(β2)=0\tan \left( \dfrac{\alpha }{2} \right)-\sqrt{3}\tan \left( \dfrac{\beta }{2} \right)=0

Explanation

Solution

First, before proceeding for this, we must know the following trigonometric formulas to get the answer easily as cosα=1tan2α21+tan2α2\cos \alpha =\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}} and cosβ=1tan2β21+tan2β2\cos \beta =\dfrac{1-{{\tan }^{2}}\dfrac{\beta }{2}}{1+{{\tan }^{2}}\dfrac{\beta }{2}}. Then, we can see that the values above are bit large and the expression becomes complex after substitution, so let us suppose as tan2α2=a{{\tan }^{2}}\dfrac{\alpha }{2}=a and tan2β2=b{{\tan }^{2}}\dfrac{\beta }{2}=b. Then, by replacing the value a and b with their original values, we get the relation, we get the final result.

Complete step-by-step answer :
In this question, we are supposed to find the correct option/s when the given condition is α\alpha and β\beta be two non-zero real numbers such that 2(cosβcosα)+cosαcosβ=12\left( \cos \beta -\cos \alpha \right)+\cos \alpha \cos \beta =1.
So, before proceeding for this, we must know the following trigonometric formulas to get the answer easily as:
cosα=1tan2α21+tan2α2\cos \alpha =\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}} and cosβ=1tan2β21+tan2β2\cos \beta =\dfrac{1-{{\tan }^{2}}\dfrac{\beta }{2}}{1+{{\tan }^{2}}\dfrac{\beta }{2}}
Now, we can see that the values above are bit large and the expression becomes complex after substitution, so let us suppose as:
tan2α2=a{{\tan }^{2}}\dfrac{\alpha }{2}=a and tan2β2=b{{\tan }^{2}}\dfrac{\beta }{2}=b
Then, after substituting the value in the given expression, we get:
2(1b1+b1a1+a)+(1a1+a)(1b1+b)=12\left( \dfrac{1-b}{1+b}-\dfrac{1-a}{1+a} \right)+\left( \dfrac{1-a}{1+a} \right)\left( \dfrac{1-b}{1+b} \right)=1
Then, by solving the above expression, we get:
2((1b)(1+a)(1a)(1+b)(1+a)(1+b))+(1a1+a)(1b1+b)=1 2(1b+aab1+ab+ab1+a+b+ab)+1ab+ab1+a+b+ab=1 4(ab)+1ab+ab=1+a+b+ab 4a4b=2b+2a 2a=6b a=3b \begin{aligned} & 2\left( \dfrac{\left( 1-b \right)\left( 1+a \right)-\left( 1-a \right)\left( 1+b \right)}{\left( 1+a \right)\left( 1+b \right)} \right)+\left( \dfrac{1-a}{1+a} \right)\left( \dfrac{1-b}{1+b} \right)=1 \\\ & \Rightarrow 2\left( \dfrac{1-b+a-ab-1+a-b+ab}{1+a+b+ab} \right)+\dfrac{1-a-b+ab}{1+a+b+ab}=1 \\\ & \Rightarrow 4\left( a-b \right)+1-a-b+ab=1+a+b+ab \\\ & \Rightarrow 4a-4b=2b+2a \\\ & \Rightarrow 2a=6b \\\ & \Rightarrow a=3b \\\ \end{aligned}
Then, by replacing the value a and b with their original values, we get the relation as:
tan2α2=3tan2β2 tan2α23tan2β2=0 \begin{aligned} & {{\tan }^{2}}\dfrac{\alpha }{2}=3{{\tan }^{2}}\dfrac{\beta }{2} \\\ & \Rightarrow {{\tan }^{2}}\dfrac{\alpha }{2}-3{{\tan }^{2}}\dfrac{\beta }{2}=0 \\\ \end{aligned}
Now, by solving further, we get:
(tanα2+3tanβ2)(tanα23tanβ2)=0\left( \tan \dfrac{\alpha }{2}+\sqrt{3}\tan \dfrac{\beta }{2} \right)\left( \tan \dfrac{\alpha }{2}-\sqrt{3}\tan \dfrac{\beta }{2} \right)=0
So, we get the two answers possible from the above conditions as:
(tanα2+3tanβ2)=0\left( \tan \dfrac{\alpha }{2}+\sqrt{3}\tan \dfrac{\beta }{2} \right)=0 and (tanα23tanβ2)=0\left( \tan \dfrac{\alpha }{2}-\sqrt{3}\tan \dfrac{\beta }{2} \right)=0
Hence, options (c) and (d) are correct.

Note : Now, to solve these types of questions we need to know some of the basic conversions beforehand so that we can easily proceed in these types of questions. Then, some of the basic conversions are:
a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)
Moreover, we must be very careful with trigonometric formulas substitution so that we will not proceed in a wrong way.