Solveeit Logo

Question

Quantitative Aptitude Question on Linear & Quadratic Equations

Let α\alpha and β\beta be the two distinct roots of the equation of 2x2-6x+k=0, such that (α+β\alpha+\beta) and αβ\alpha\beta are the distinct roots of the equation x2+px+p=0, then, the value of 8(k-p) ?

Answer

Given :
α and β are the distinct roots of the equation 2x2 - 6x + k = 0
⇒ αβ = k2\frac{k}{2} …… ( Product of the roots )
⇒ α + β = (62)-(\frac{-6}{2}) = 3 ( Sum of the roots )
So, (α + β) and αβ are the roots of the equation x2 + px + p = 0
⇒ α + β + αβ = -p
⇒ 3 + k2\frac{k}{2} = -p …… (i)
⇒ (α + β)(αβ) = p
3(k2)3(\frac{k}{2}) = p …… (ii)
Now , from eqn (i) and (ii) , we get
3+k2=3k23+\frac{k}{2}=-\frac{3k}{2}
= 2k = -3
⇒ k = 32-\frac{3}{2}
By using the value of k , we get p
p = 3k2=32(32)=94\frac{3k}{2}=\frac{3}{2}(-\frac{3}{2})=-\frac{9}{4}
Now , the value of 8(k-p) is
⇒ 8( k-p ) = 8(32+94)8(-\frac{3}{2}+\frac{9}{4})
= -12 + 18
= 16
So, the correct answer is 16.