Solveeit Logo

Question

Question: Let $\alpha$ and $\beta$ be the roots of the equation $x^2+x+1=0$. Then $\begin{vmatrix} 3 & \alpha...

Let α\alpha and β\beta be the roots of the equation x2+x+1=0x^2+x+1=0. Then

3αβα2+β1β12+α\begin{vmatrix} 3 & \alpha & \beta \\ \alpha & 2+\beta & 1 \\ \beta & 1 & 2+\alpha \end{vmatrix} is equal to

A

0

B

1

C

4

D

8

Answer

8

Explanation

Solution

The given equation is x2+x+1=0x^2+x+1=0. Let its roots be α\alpha and β\beta. From Vieta's formulas, we have:

  1. Sum of roots: α+β=1\alpha + \beta = -1
  2. Product of roots: αβ=1\alpha \beta = 1

Also, since α\alpha and β\beta are roots of x2+x+1=0x^2+x+1=0, they satisfy the equation: α2+α+1=0    α2=α1\alpha^2+\alpha+1=0 \implies \alpha^2 = -\alpha-1 β2+β+1=0    β2=β1\beta^2+\beta+1=0 \implies \beta^2 = -\beta-1 These roots are the complex cube roots of unity, usually denoted as ω\omega and ω2\omega^2. So, we can consider α=ω\alpha = \omega and β=ω2\beta = \omega^2. This also means α3=1\alpha^3 = 1 and β3=1\beta^3 = 1.

Let the given determinant be DD. D=3αβα2+β1β12+αD = \begin{vmatrix} 3 & \alpha & \beta \\ \alpha & 2+\beta & 1 \\ \beta & 1 & 2+\alpha \end{vmatrix}

Apply the column operation C1C1+C2+C3C_1 \to C_1 + C_2 + C_3. The new elements in the first column will be: 3+α+β=3+(1)=23 + \alpha + \beta = 3 + (-1) = 2 α+(2+β)+1=α+β+3=(1)+3=2\alpha + (2+\beta) + 1 = \alpha + \beta + 3 = (-1) + 3 = 2 β+1+(2+α)=α+β+3=(1)+3=2\beta + 1 + (2+\alpha) = \alpha + \beta + 3 = (-1) + 3 = 2

So the determinant becomes: D=2αβ22+β1212+αD = \begin{vmatrix} 2 & \alpha & \beta \\ 2 & 2+\beta & 1 \\ 2 & 1 & 2+\alpha \end{vmatrix}

Take 2 common from the first column: D=21αβ12+β1112+αD = 2 \begin{vmatrix} 1 & \alpha & \beta \\ 1 & 2+\beta & 1 \\ 1 & 1 & 2+\alpha \end{vmatrix}

Now, apply row operations to create zeros in the first column: R2R2R1R_2 \to R_2 - R_1 R3R3R1R_3 \to R_3 - R_1

The new elements for R2R_2: 11=01-1 = 0 (2+β)α=2+βα(2+\beta) - \alpha = 2+\beta-\alpha 1β1 - \beta

The new elements for R3R_3: 11=01-1 = 0 1α1 - \alpha (2+α)β=2+αβ(2+\alpha) - \beta = 2+\alpha-\beta

The determinant simplifies to: D=21αβ02+βα1β01α2+αβD = 2 \begin{vmatrix} 1 & \alpha & \beta \\ 0 & 2+\beta-\alpha & 1-\beta \\ 0 & 1-\alpha & 2+\alpha-\beta \end{vmatrix}

Expand the determinant along the first column: D=2×1×[(2+βα)(2+αβ)(1β)(1α)]D = 2 \times 1 \times \left[ (2+\beta-\alpha)(2+\alpha-\beta) - (1-\beta)(1-\alpha) \right]

Let's evaluate the two terms inside the bracket:

Term 1: (2+βα)(2+αβ)(2+\beta-\alpha)(2+\alpha-\beta) We know β=1α\beta = -1-\alpha. Substitute this into 2+βα2+\beta-\alpha: 2+(1α)α=12α2+(-1-\alpha)-\alpha = 1-2\alpha. We know α=1β\alpha = -1-\beta. Substitute this into 2+αβ2+\alpha-\beta: 2+(1β)β=12β2+(-1-\beta)-\beta = 1-2\beta. So, the product is (12α)(12β)(1-2\alpha)(1-2\beta). Expand this product: 12α2β+4αβ=12(α+β)+4αβ1 - 2\alpha - 2\beta + 4\alpha\beta = 1 - 2(\alpha+\beta) + 4\alpha\beta. Substitute α+β=1\alpha+\beta=-1 and αβ=1\alpha\beta=1: 12(1)+4(1)=1+2+4=71 - 2(-1) + 4(1) = 1 + 2 + 4 = 7.

Term 2: (1β)(1α)(1-\beta)(1-\alpha) Expand this product: 1αβ+αβ=1(α+β)+αβ1 - \alpha - \beta + \alpha\beta = 1 - (\alpha+\beta) + \alpha\beta. Substitute α+β=1\alpha+\beta=-1 and αβ=1\alpha\beta=1: 1(1)+1=1+1+1=31 - (-1) + 1 = 1 + 1 + 1 = 3.

Now substitute these values back into the expression for DD: D=2[73]D = 2 [7 - 3] D=2[4]D = 2 [4] D=8D = 8

The final answer is 8\boxed{8}.