Solveeit Logo

Question

Question: Let \(\alpha \) and \(\beta \) be the roots of the equation \({{x}^{2}}\operatorname{Sin}\theta -x\l...

Let α\alpha and β\beta be the roots of the equation x2Sinθx(SinθCosθ+1)+Cosθ=0{{x}^{2}}\operatorname{Sin}\theta -x\left( \operatorname{Sin}\theta \operatorname{Cos}\theta +1 \right)+\operatorname{Cos}\theta =0
(0<θ<45)\left( 0<\theta <{{45}^{\circ }} \right) , and α<β\alpha <\beta . Then n=0(αn+(1)nβn)\sum\limits_{n=0}^{\infty }{\left( {{\alpha }^{n}}+\dfrac{{{\left( -1 \right)}^{n}}}{{{\beta }^{n}}} \right)} is equal to:
(a) 11Cosθ+11+Sinθ\dfrac{1}{1-\operatorname{Cos}\theta }+\dfrac{1}{1+\operatorname{Sin}\theta }
(b) 11+Cosθ+11Sinθ\dfrac{1}{1+\operatorname{Cos}\theta }+\dfrac{1}{1-\operatorname{Sin}\theta }
(c) 11Cosθ11+Sinθ\dfrac{1}{1-\operatorname{Cos}\theta }-\dfrac{1}{1+\operatorname{Sin}\theta }
(d) 11+Cosθ11Sinθ\dfrac{1}{1+\operatorname{Cos}\theta }-\dfrac{1}{1-\operatorname{Sin}\theta }

Explanation

Solution

Find the roots of the given equation, put the value of α\alpha and β\beta in the summation .( Choose the value of α\alpha and β\beta by keeping in mind that α<β\alpha <\beta and (0<θ<45)\left( 0<\theta <{{45}^{\circ }} \right) ). Now separate the summation of both the terms and observe that they are Geometric Series with some common ratio.
And we know that the infinite sum of Geometric series is equal to 11CommonRatio\dfrac{1}{1-CommonRatio} .

Complete step-by-step answer:
To find the summation , we need the values of α\alpha and β\beta , so for that we will first find the roots of the given quadratic equation,
Consider the given quadratic equation,
x2Sinθx(SinθCosθ+1)+Cosθ=0{{x}^{2}}\operatorname{Sin}\theta -x\left( \operatorname{Sin}\theta \operatorname{Cos}\theta +1 \right)+\operatorname{Cos}\theta =0
x=(SinθCosθ+1)±(SinθCosθ+1)24SinθCosθ2Sinθ =(SinθCosθ+1)±(Sin2θCos2θ+1)2SinθCosθ2Sinθ =(SinθCosθ+1)±(SinθCosθ1)22Sinθ =(SinθCosθ+1)±(SinθCosθ1)2Sinθ =Cosθ,Cosecθ\begin{aligned} & x=\dfrac{\left( \operatorname{Sin}\theta \operatorname{Cos}\theta +1 \right)\pm \sqrt{{{\left( \operatorname{Sin}\theta \operatorname{Cos}\theta +1 \right)}^{2}}-4\operatorname{Sin}\theta \operatorname{Cos}\theta }}{2\operatorname{Sin}\theta } \\\ & =\dfrac{\left( \operatorname{Sin}\theta \operatorname{Cos}\theta +1 \right)\pm \sqrt{\left( {{\operatorname{Sin}}^{2}}\theta {{\operatorname{Cos}}^{2}}\theta +1 \right)-2\operatorname{Sin}\theta \operatorname{Cos}\theta }}{2\operatorname{Sin}\theta } \\\ & =\dfrac{\left( \operatorname{Sin}\theta \operatorname{Cos}\theta +1 \right)\pm \sqrt{{{\left( \operatorname{Sin}\theta \operatorname{Cos}\theta -1 \right)}^{2}}}}{2\operatorname{Sin}\theta } \\\ & =\dfrac{\left( \operatorname{Sin}\theta \operatorname{Cos}\theta +1 \right)\pm \left( \operatorname{Sin}\theta \operatorname{Cos}\theta -1 \right)}{2\operatorname{Sin}\theta } \\\ & =\operatorname{Cos}\theta ,\operatorname{Cosec}\theta \end{aligned}
Now that we have the roots of the given equation, we have to decide which is α\alpha and which is β\beta based on the information that
(0<θ<45)\left( 0<\theta <{{45}^{\circ }} \right) and α<β\alpha <\beta
In this range Cos is always between 0 and 1, Cosec is always between 2\sqrt{2} and \infty
Hence , in this range Cosec is always greater than Cos
Hence , α=Cosθ\alpha =\operatorname{Cos}\theta and β=Cosecθ\beta =\operatorname{Cosec}\theta
Now, the given summation becomes,
n=0(Cosnθ+(1)n(Cosecθ)n)\sum\limits_{n=0}^{\infty }{\left( {{\operatorname{Cos}}^{n}}\theta +\dfrac{{{\left( -1 \right)}^{n}}}{{{\left( \operatorname{Cosec}\theta \right)}^{n}}} \right)}
Now, we will separate it into 2 sums , and get,
n=0(Cosnθ)+n=0(1)n(Cosecθ)n\sum\limits_{n=0}^{\infty }{\left( {{\operatorname{Cos}}^{n}}\theta \right)+}\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{{{\left( \operatorname{Cosec}\theta \right)}^{n}}}}
Now, Since Cosθ1\left| \operatorname{Cos}\theta \right|\le 1
so the first geometric infinite series with common ratio Cosθ\operatorname{Cos}\theta and since the common ratio is less than 1 , this series is convergent and converges to 11Cosθ\dfrac{1}{1-\operatorname{Cos}\theta } .
and the second series is also a geometric series with common ratio 1Cosecθ-\dfrac{1}{\operatorname{Cosec}\theta }
Now, we will check if this ratio is less than 1 or not
2<Cosecθ<\sqrt{2}<\operatorname{Cosec}\theta <\infty
Hence , 0<1Cosecθ<120<\dfrac{1}{\operatorname{Cosec}\theta }<\dfrac{1}{\sqrt{2}}
Hence , second series has the common ratio less than 1
And hence it is also convergent and converges to 11(1Cosecθ) =11+Sinθ \begin{aligned} & \dfrac{1}{1-\left( -\dfrac{1}{\operatorname{Cosec}\theta } \right)} \\\ & =\dfrac{1}{1+\operatorname{Sin}\theta } \\\ \end{aligned}
Hence , the whole series converges to 11Cosθ+11+Sinθ\dfrac{1}{1-\operatorname{Cos}\theta }+\dfrac{1}{1+\operatorname{Sin}\theta } .

So, the correct answer is “Option A”.

Note: The possibility of mistake here is that students can forget the sign of the common ratio of the second series . The series also has (1)n{{\left( -1 \right)}^{n}} , so its common ratio has negative signs in it . So, we have to take the common ratio to be the term 1Cosecθ-\dfrac{1}{\operatorname{Cosec}\theta } and evaluate the sum of the geometric series.
And get the desired sum.