Solveeit Logo

Question

Question: Let \(\alpha \) and \(\beta \) be the roots of equation \({{x}^{2}}+x+1=0\) , then for \(y\ne 0\) in...

Let α\alpha and β\beta be the roots of equation x2+x+1=0{{x}^{2}}+x+1=0 , then for y0y\ne 0 in R, 1+yαβ αy+β1 β1y+α \left| \begin{matrix} 1+y & \alpha & \beta \\\ \alpha & y+\beta & 1 \\\ \beta & 1 & y+\alpha \\\ \end{matrix} \right| is equals to?
(a) y3{{y}^{3}}
(b) y31{{y}^{3}}-1
(c) y(y21)y({{y}^{2}}-1)
(d) y(y23)y({{y}^{2}}-3)

Explanation

Solution

To solve this determinant, what we will do is firstly, we will find out the roots of the quadratic equation x2+x+1=0{{x}^{2}}+x+1=0. Then, we will use row and column elementary transformation and property of the cube root of unity which is 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 to solve the determinant.

Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order 3×33\times 3, then determinant of matrix A of 3×33\times 3 is evaluated as,
a11a12a13 a21a22a23 a31a32a33 =a11(a22a33a32a23)a21(a12a33a32a13)+a31(a23a12a22a13)\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Firstly, finding roots of quadratic equation x2+x+1=0{{x}^{2}}+x+1=0, by quadratic formula, x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} by comparing with ax2+bx+c=0a{{x}^{2}}+bx+c=0 , we get
a = 1, b = 1 c =1
so, x=1±124(1)(1)2(1)x=\dfrac{-1\pm \sqrt{{{1}^{2}}-4(1)(1)}}{2(1)}
On solving, we get
x=1±i32x=\dfrac{-1\pm i\sqrt{3}}{2}
Let, α=ω=1+i32\alpha =\omega =\dfrac{-1+i\sqrt{3}}{2} and β=ω2=1i32\beta ={{\omega }^{2}}=\dfrac{-1-i\sqrt{3}}{2}
Now, we have to evaluate 1+yαβ αy+β1 β1y+α \left| \begin{matrix} 1+y & \alpha & \beta \\\ \alpha & y+\beta & 1 \\\ \beta & 1 & y+\alpha \\\ \end{matrix} \right|
Or, 1+yωω2 ωy+ω21 ω21y+ω \left| \begin{matrix} 1+y & \omega & {{\omega }^{2}} \\\ \omega & y+{{\omega }^{2}} & 1 \\\ {{\omega }^{2}} & 1 & y+\omega \\\ \end{matrix} \right|
Now, using elementary row operation R1R1+R2+R3{{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}} , we get
=1+ω+ω2+y1+ω+ω2+y1+ω+ω2+y ωy+ω21 ω21y+ω =\left| \begin{matrix} 1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y \\\ \omega & y+{{\omega }^{2}} & 1 \\\ {{\omega }^{2}} & 1 & y+\omega \\\ \end{matrix} \right|
We know that, 1+ω+ω2=01+\omega +{{\omega }^{2}}=0
So, =yyy ωy+ω21 ω21y+ω =\left| \begin{matrix} y & y & y \\\ \omega & y+{{\omega }^{2}} & 1 \\\ {{\omega }^{2}} & 1 & y+\omega \\\ \end{matrix} \right|
Taking y common from first row, we get
=y111 ωy+ω21 ω21y+ω =y\left| \begin{matrix} 1 & 1 & 1 \\\ \omega & y+{{\omega }^{2}} & 1 \\\ {{\omega }^{2}} & 1 & y+\omega \\\ \end{matrix} \right|
Using elementary row operation C1C1C2{{C}_{1}}\to {{C}_{1}}-{{C}_{2}} and elementary row operation C2C2C3{{C}_{2}}\to {{C}_{2}}-{{C}_{3}}, we get

0 & 0 & 1 \\\ \omega -y-{{\omega }^{2}} & y+{{\omega }^{2}}-1 & 1 \\\ {{\omega }^{2}}-1 & 1-y-\omega & y+\omega \\\ \end{matrix} \right|$$ Expanding determinant along row ${{R}_{1}}$, we get $$=y\left[ 0-0+1\left( \left( \omega -y-{{\omega }^{2}} \right)\cdot \left( 1-y-\omega \right)-(y+{{\omega }^{2}}-1)\cdot ({{\omega }^{2}}-1) \right) \right]$$ On simplifying by solving the brackets, we get $$=y\left[ 0-0+{{y}^{2}} \right]$$ $$=y\left[ {{y}^{2}} \right]$$ On solving, we get $={{y}^{3}}$ Hence, determinant $\left| \begin{matrix} 1+y & \alpha & \beta \\\ \alpha & y+\beta & 1 \\\ \beta & 1 & y+\alpha \\\ \end{matrix} \right|={{y}^{3}}$ **So, the correct answer is “Option A”.** **Note:** It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Also remember that finding roots of quadratic equation $a{{x}^{2}}+bx+c=0$, can be done by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and if $\omega $ is complex cube root of infinity, then $1+\omega +{{\omega }^{2}}=0$ . Calculation should be done carefully while solving determinant problems.