Solveeit Logo

Question

Mathematics Question on Derivatives

Let α\alpha and β\beta be the roots of ax2+bx+c=0a{{x}^{2}}+bx+c=0 . Then, limxα1cos(ax2+bx+c)(xα)2\underset{x\to \alpha }{\mathop{\lim }}\,\frac{1-\cos (a{{x}^{2}}+bx+c)}{{{(x-\alpha )}^{2}}} is equal to

A

00

B

12(αβ)2\frac{1}{2}{{(\alpha -\beta )}^{2}}

C

a22(αβ)2\frac{{{a}^{2}}}{2}{{(\alpha -\beta )}^{2}}

D

(αβ)(\alpha -\beta )

Answer

a22(αβ)2\frac{{{a}^{2}}}{2}{{(\alpha -\beta )}^{2}}

Explanation

Solution

Since, α\alpha and β\beta are the roots of ax2+bx+c=0a{{x}^{2}}+bx+c=0 .
\therefore a(xα)(xβ)=ax2+bx+ca(x-\alpha )(x-\beta )=a{{x}^{2}}+bx+c Now, limxα=1cos(ax2+bx+c)(xα)2\underset{x\to \alpha }{\mathop{\lim }}\,=\frac{1-\cos (a{{x}^{2}}+bx+c)}{{{(x-\alpha )}^{2}}}
=limxα=2sin2(ax2+bx+c2)(xα)2=\underset{x\to \alpha }{\mathop{\lim }}\,=\frac{2{{\sin }^{2}}\left( \frac{a{{x}^{2}}+bx+c}{2} \right)}{{{(x-\alpha )}^{2}}}
=limxα=2sin2a(xα)(xβ)2(a(xα)(xβ)2)2×a2(xβ)24=\underset{x\to \alpha }{\mathop{\lim }}\,=\frac{2{{\sin }^{2}}\frac{a(x-\alpha )(x-\beta )}{2}}{{{\left( \frac{a(x-\alpha )(x-\beta )}{2} \right)}^{2}}}\times \frac{{{a}^{2}}{{(x-\beta )}^{2}}}{4}
=a2(αβ)22=\frac{{{a}^{2}}{{(\alpha -\beta )}^{2}}}{2}