Question
Mathematics Question on Derivatives
Let α and β be the roots of ax2+bx+c=0 . Then, x→αlim(x−α)21−cos(ax2+bx+c) is equal to
A
0
B
21(α−β)2
C
2a2(α−β)2
D
(α−β)
Answer
2a2(α−β)2
Explanation
Solution
Since, α and β are the roots of ax2+bx+c=0 .
∴ a(x−α)(x−β)=ax2+bx+c Now, x→αlim=(x−α)21−cos(ax2+bx+c)
=x→αlim=(x−α)22sin2(2ax2+bx+c)
=x→αlim=(2a(x−α)(x−β))22sin22a(x−α)(x−β)×4a2(x−β)2
=2a2(α−β)2