Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let α\alpha and β\beta be the distinct roots of ax2+bx+c=0ax^2 + bx + c = 0 , then limxα1cos(ax2+bx+c)(xα)2\displaystyle \lim_{x \to\alpha} \frac{1- \cos \left(ax^{2} + bx + c\right)}{\left(x-\alpha\right)^{2}} is equal to

A

a22(αβ)2\frac{a^2}{2} (\alpha - \beta)^2

B

0

C

a22(αβ)2\frac{-a^2}{2} (\alpha - \beta )^2

D

12(αβ)2\frac{1}{2} (\alpha - \beta )^2

Answer

a22(αβ)2\frac{a^2}{2} (\alpha - \beta)^2

Explanation

Solution

Given limit =limxα1cosa(xα)(xβ)(xα)2= \displaystyle \lim_{x \to\alpha} \frac{1- \cos a\left(x -\alpha\right)\left(x-\beta\right)}{\left(x -\alpha\right)^{2}} =limxα2sin2(a(xα)(xβ)2)(xα)2= \displaystyle \lim_{x \to\alpha} \frac{2\sin^{2} \left(a \frac{\left(x -\alpha\right)\left(x - \beta\right)}{2}\right)}{\left(x -\alpha\right)^{2}} =limxα2(xα)2×sin2(a(xα)(xβ)2)a2(xα)2(xβ)24×a2(xα)2(xβ)24=\displaystyle \lim_{x \to\alpha } \frac{2}{\left(x -\alpha\right)^{2}} \times\frac{\sin^{2}\left(a \frac{\left(x-\alpha\right)\left(x -\beta\right)}{2}\right)}{\frac{a^{2}\left(x-\alpha\right)^{2}\left(x-\beta\right)^{2}}{4}} \times\frac{a^{2} \left(x-\alpha\right)^{2} \left(x -\beta\right)^{2}}{4} =a2(αβ)22= \frac{a^{2}\left(\alpha - \beta\right)^{2}}{2}.