Question
Mathematics Question on limits and derivatives
Let α and β be the distinct roots of ax2+bx+c=0 , then x→αlim(x−α)21−cos(ax2+bx+c) is equal to
A
2a2(α−β)2
B
0
C
2−a2(α−β)2
D
21(α−β)2
Answer
2a2(α−β)2
Explanation
Solution
Given limit =x→αlim(x−α)21−cosa(x−α)(x−β) =x→αlim(x−α)22sin2(a2(x−α)(x−β)) =x→αlim(x−α)22×4a2(x−α)2(x−β)2sin2(a2(x−α)(x−β))×4a2(x−α)2(x−β)2 =2a2(α−β)2.