Solveeit Logo

Question

Mathematics Question on Some Applications of Trigonometry

Let α\alpha and β\beta be real numbers such that π4<β<0<α<π4-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4} If sin(α+β)=13\sin (\alpha+\beta)=\frac{1}{3} and cos(αβ)=23\cos (\alpha-\beta)=\frac{2}{3}, then the greatest integer less than or equal to (sinαcosβ+cosβsinα+cosαsinβ+sinβcosα)2\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2 is ____.

Answer

The answer is 1.