Question
Mathematics Question on Some Applications of Trigonometry
Let α and β be real numbers such that −4π<β<0<α<4π. If sin(α+β)=31 and cos(α−β)=32, then the greatest integer less than or equal to (cosβsinα+sinαcosβ+sinβcosα+cosαsinβ)2 is ____.
Answer
Given :
sin(α+β)=31 and cos(α−β)=32
(cosβsinα+sinαcosβ+sinβcosα+cosαsinβ)2
=(sinβcosβcos(α−β)+sinα.cosαcos(α−β))2
=\left(\frac{4}{3} \left\\{\frac{1}{\sin2\beta}+\frac{1}{\sin2\alpha}\right\\}\right)^2
=916(sin2α.sin2β2sin(α+β).cos(α−β))2
=916(cos(2α−2β)−cos(2α+2β)4.21.32)2
=916(2cos2(α−β)−1−1+2sin2(α+β)98)2
=916(98+2+9298)
=916
=1
Therefore, the correct answer is 1.