Solveeit Logo

Question

Mathematics Question on Some Applications of Trigonometry

Let α\alpha and β\beta be real numbers such that π4<β<0<α<π4-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}. If sin(α+β)=13\sin (\alpha+\beta)=\frac{1}{3} and cos(αβ)=23\cos (\alpha-\beta)=\frac{2}{3}, then the greatest integer less than or equal to (sinαcosβ+cosβsinα+cosαsinβ+sinβcosα)2\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2 is ____.

Answer

Given :
sin(α+β)=13\sin(\alpha+\beta)=\frac{1}{3} and cos(αβ)=23\cos(\alpha-\beta)=\frac{2}{3}
(sinαcosβ+cosβsinα+cosαsinβ+sinβcosα)2\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2
=(cos(αβ)sinβcosβ+cos(αβ)sinα.cosα)2=(\frac{\cos(\alpha-\beta)}{\sin\beta\cos\beta}+\frac{\cos(\alpha-\beta)}{\sin\alpha.\cos\alpha})^2
=\left(\frac{4}{3} \left\\{\frac{1}{\sin2\beta}+\frac{1}{\sin2\alpha}\right\\}\right)^2
=169(2sin(α+β).cos(αβ)sin2α.sin2β)2=\frac{16}{9}\left(\frac{2\sin(\alpha+\beta).\cos(\alpha-\beta)}{\sin2\alpha.\sin2\beta}\right)^2
=169(4.12.23cos(2α2β)cos(2α+2β))2=\frac{16}{9}(\frac{4.\frac{1}{2}.\frac{2}{3}}{\cos(2\alpha-2\beta)-\cos(2\alpha+2\beta)})^2
=169(892cos2(αβ)11+2sin2(α+β))2=\frac{16}{9}\left(\frac{\frac{8}{9}}{2\cos^2(\alpha-\beta)-1-1+2\sin^2(\alpha+\beta)}\right)^2
=169(8989+2+29)=\frac{16}{9}(\frac{\frac{8}{9}}{\frac{8}{9}+2+\frac{2}{9}})
=169=\frac{16}{9}
=1=1
Therefore, the correct answer is 1.