Solveeit Logo

Question

Question: Let $\alpha$ and $\beta$ are two real roots of $x^2 + 10x - 7 = 0$. Then...

Let α\alpha and β\beta are two real roots of x2+10x7=0x^2 + 10x - 7 = 0. Then

A

α20+β207(α18+β18)α19+β19=10\frac{\alpha^{20} + \beta^{20} - 7(\alpha^{18} + \beta^{18})}{\alpha^{19} + \beta^{19}} = -10

B

αβ187αβ1610α17βα16+β16=70\frac{\alpha\beta^{18} - 7\alpha\beta^{16} - 10\alpha^{17}\beta}{\alpha^{16} + \beta^{16}} = 70

C

(α7α)(β7β)=10\sqrt{(\alpha - \frac{7}{\alpha})(\beta - \frac{7}{\beta})} = 10

D

α3+9α217α+14β3+11β2+3β8=7\frac{\alpha^3 + 9\alpha^2 - 17\alpha + 14}{\beta^3 + 11\beta^2 + 3\beta - 8} = 7

Answer

A, B, C

Explanation

Solution

The given equation is x2+10x7=0x^2 + 10x - 7 = 0. Let α\alpha and β\beta be the real roots of this equation. By Vieta's formulas, we have: α+β=10\alpha + \beta = -10 αβ=7\alpha \beta = -7 Since α\alpha and β\beta are roots of the equation, they satisfy the equation: α2+10α7=0    α2=10α+7\alpha^2 + 10\alpha - 7 = 0 \implies \alpha^2 = -10\alpha + 7 β2+10β7=0    β2=10β+7\beta^2 + 10\beta - 7 = 0 \implies \beta^2 = -10\beta + 7

Let's evaluate each option:

A) α20+β207(α18+β18)α19+β19\frac{\alpha^{20} + \beta^{20} - 7(\alpha^{18} + \beta^{18})}{\alpha^{19} + \beta^{19}} Numerator = α207α18+β207β18=α18(α27)+β18(β27)\alpha^{20} - 7\alpha^{18} + \beta^{20} - 7\beta^{18} = \alpha^{18}(\alpha^2 - 7) + \beta^{18}(\beta^2 - 7). From α2+10α7=0\alpha^2 + 10\alpha - 7 = 0, we have α27=10α\alpha^2 - 7 = -10\alpha. From β2+10β7=0\beta^2 + 10\beta - 7 = 0, we have β27=10β\beta^2 - 7 = -10\beta. Numerator = α18(10α)+β18(10β)=10α1910β19=10(α19+β19)\alpha^{18}(-10\alpha) + \beta^{18}(-10\beta) = -10\alpha^{19} - 10\beta^{19} = -10(\alpha^{19} + \beta^{19}). The expression is 10(α19+β19)α19+β19=10\frac{-10(\alpha^{19} + \beta^{19})}{\alpha^{19} + \beta^{19}} = -10. The roots are x=10±100+282=5±32=5±42x = \frac{-10 \pm \sqrt{100+28}}{2} = -5 \pm \sqrt{32} = -5 \pm 4\sqrt{2}. Let α=5+42=425\alpha = -5 + 4\sqrt{2} = 4\sqrt{2} - 5 and β=542=(5+42)\beta = -5 - 4\sqrt{2} = -(5 + 4\sqrt{2}). Since 42=324\sqrt{2} = \sqrt{32} and 5=255 = \sqrt{25}, 42>54\sqrt{2} > 5, so α>0\alpha > 0. Also, 5+42>05 + 4\sqrt{2} > 0, so β<0\beta < 0. α19>0\alpha^{19} > 0 and β19<0\beta^{19} < 0. β=5+42|\beta| = 5 + 4\sqrt{2} and α=425|\alpha| = 4\sqrt{2} - 5. Since 5+42>4255 + 4\sqrt{2} > 4\sqrt{2} - 5, β>α|\beta| > |\alpha|. So β19\beta^{19} is a negative number with a larger magnitude than the positive number α19\alpha^{19}. Hence, α19+β190\alpha^{19} + \beta^{19} \neq 0. So option A is correct.

B) αβ187αβ1610α17βα16+β16\frac{\alpha\beta^{18} - 7\alpha\beta^{16} - 10\alpha^{17}\beta}{\alpha^{16} + \beta^{16}} Numerator = αβ16(β27)10α17β\alpha\beta^{16}(\beta^2 - 7) - 10\alpha^{17}\beta. Using β27=10β\beta^2 - 7 = -10\beta, the numerator becomes αβ16(10β)10α17β=10αβ1710α17β\alpha\beta^{16}(-10\beta) - 10\alpha^{17}\beta = -10\alpha\beta^{17} - 10\alpha^{17}\beta. Factor out 10αβ-10\alpha\beta: 10αβ(β16+α16)-10\alpha\beta(\beta^{16} + \alpha^{16}). Using αβ=7\alpha\beta = -7, the numerator becomes 10(7)(α16+β16)=70(α16+β16)-10(-7)(\alpha^{16} + \beta^{16}) = 70(\alpha^{16} + \beta^{16}). The expression is 70(α16+β16)α16+β16=70\frac{70(\alpha^{16} + \beta^{16})}{\alpha^{16} + \beta^{16}} = 70. Since α=425>0\alpha = 4\sqrt{2} - 5 > 0 and β=(5+42)<0\beta = -(5 + 4\sqrt{2}) < 0, α16>0\alpha^{16} > 0 and β16=((5+42))16=(5+42)16>0\beta^{16} = (-(5 + 4\sqrt{2}))^{16} = (5 + 4\sqrt{2})^{16} > 0. So α16+β16>0\alpha^{16} + \beta^{16} > 0. So option B is correct.

C) (α7α)(β7β)\sqrt{(\alpha - \frac{7}{\alpha})(\beta - \frac{7}{\beta})} From α2+10α7=0\alpha^2 + 10\alpha - 7 = 0, dividing by α\alpha (since α0\alpha \neq 0), we get α+107α=0\alpha + 10 - \frac{7}{\alpha} = 0, so α7α=10\alpha - \frac{7}{\alpha} = -10. From β2+10β7=0\beta^2 + 10\beta - 7 = 0, dividing by β\beta (since β0\beta \neq 0), we get β+107β=0\beta + 10 - \frac{7}{\beta} = 0, so β7β=10\beta - \frac{7}{\beta} = -10. The expression is (10)(10)=100=10\sqrt{(-10)(-10)} = \sqrt{100} = 10. So option C is correct.

D) α3+9α217α+14β3+11β2+3β8\frac{\alpha^3 + 9\alpha^2 - 17\alpha + 14}{\beta^3 + 11\beta^2 + 3\beta - 8} Let P(x)=x3+9x217x+14P(x) = x^3 + 9x^2 - 17x + 14. We want to evaluate P(α)P(\alpha). Since α2+10α7=0\alpha^2 + 10\alpha - 7 = 0, we can divide P(x)P(x) by x2+10x7x^2 + 10x - 7. Using polynomial division: x3+9x217x+14=(x)(x2+10x7)x210x+14x^3 + 9x^2 - 17x + 14 = (x)(x^2 + 10x - 7) - x^2 - 10x + 14 =x(x2+10x7)(x2+10x7)+7= x(x^2 + 10x - 7) - (x^2 + 10x - 7) + 7 =(x2+10x7)(x1)+7= (x^2 + 10x - 7)(x - 1) + 7. So, α3+9α217α+14=(α2+10α7)(α1)+7=(0)(α1)+7=7\alpha^3 + 9\alpha^2 - 17\alpha + 14 = (\alpha^2 + 10\alpha - 7)(\alpha - 1) + 7 = (0)(\alpha - 1) + 7 = 7. Numerator = 7.

Let Q(x)=x3+11x2+3x8Q(x) = x^3 + 11x^2 + 3x - 8. We want to evaluate Q(β)Q(\beta). Since β2+10β7=0\beta^2 + 10\beta - 7 = 0, we can divide Q(x)Q(x) by x2+10x7x^2 + 10x - 7. Using polynomial division: x3+11x2+3x8=(x)(x2+10x7)+x2+10x8x^3 + 11x^2 + 3x - 8 = (x)(x^2 + 10x - 7) + x^2 + 10x - 8 =x(x2+10x7)+(x2+10x7)1= x(x^2 + 10x - 7) + (x^2 + 10x - 7) - 1 =(x2+10x7)(x+1)1= (x^2 + 10x - 7)(x + 1) - 1. So, β3+11β2+3β8=(β2+10β7)(β+1)1=(0)(β+1)1=1\beta^3 + 11\beta^2 + 3\beta - 8 = (\beta^2 + 10\beta - 7)(\beta + 1) - 1 = (0)(\beta + 1) - 1 = -1. Denominator = -1. The expression is 71=7\frac{7}{-1} = -7. So option D is incorrect.

All options A, B, and C are correct.