Question
Question: Let $\alpha$ and $\beta$ are two real roots of $x^2 + 10x - 7 = 0$. Then...
Let α and β are two real roots of x2+10x−7=0. Then

α19+β19α20+β20−7(α18+β18)=−10
α16+β16αβ18−7αβ16−10α17β=70
(α−α7)(β−β7)=10
β3+11β2+3β−8α3+9α2−17α+14=7
A, B, C
Solution
The given equation is x2+10x−7=0. Let α and β be the real roots of this equation. By Vieta's formulas, we have: α+β=−10 αβ=−7 Since α and β are roots of the equation, they satisfy the equation: α2+10α−7=0⟹α2=−10α+7 β2+10β−7=0⟹β2=−10β+7
Let's evaluate each option:
A) α19+β19α20+β20−7(α18+β18) Numerator = α20−7α18+β20−7β18=α18(α2−7)+β18(β2−7). From α2+10α−7=0, we have α2−7=−10α. From β2+10β−7=0, we have β2−7=−10β. Numerator = α18(−10α)+β18(−10β)=−10α19−10β19=−10(α19+β19). The expression is α19+β19−10(α19+β19)=−10. The roots are x=2−10±100+28=−5±32=−5±42. Let α=−5+42=42−5 and β=−5−42=−(5+42). Since 42=32 and 5=25, 42>5, so α>0. Also, 5+42>0, so β<0. α19>0 and β19<0. ∣β∣=5+42 and ∣α∣=42−5. Since 5+42>42−5, ∣β∣>∣α∣. So β19 is a negative number with a larger magnitude than the positive number α19. Hence, α19+β19=0. So option A is correct.
B) α16+β16αβ18−7αβ16−10α17β Numerator = αβ16(β2−7)−10α17β. Using β2−7=−10β, the numerator becomes αβ16(−10β)−10α17β=−10αβ17−10α17β. Factor out −10αβ: −10αβ(β16+α16). Using αβ=−7, the numerator becomes −10(−7)(α16+β16)=70(α16+β16). The expression is α16+β1670(α16+β16)=70. Since α=42−5>0 and β=−(5+42)<0, α16>0 and β16=(−(5+42))16=(5+42)16>0. So α16+β16>0. So option B is correct.
C) (α−α7)(β−β7) From α2+10α−7=0, dividing by α (since α=0), we get α+10−α7=0, so α−α7=−10. From β2+10β−7=0, dividing by β (since β=0), we get β+10−β7=0, so β−β7=−10. The expression is (−10)(−10)=100=10. So option C is correct.
D) β3+11β2+3β−8α3+9α2−17α+14 Let P(x)=x3+9x2−17x+14. We want to evaluate P(α). Since α2+10α−7=0, we can divide P(x) by x2+10x−7. Using polynomial division: x3+9x2−17x+14=(x)(x2+10x−7)−x2−10x+14 =x(x2+10x−7)−(x2+10x−7)+7 =(x2+10x−7)(x−1)+7. So, α3+9α2−17α+14=(α2+10α−7)(α−1)+7=(0)(α−1)+7=7. Numerator = 7.
Let Q(x)=x3+11x2+3x−8. We want to evaluate Q(β). Since β2+10β−7=0, we can divide Q(x) by x2+10x−7. Using polynomial division: x3+11x2+3x−8=(x)(x2+10x−7)+x2+10x−8 =x(x2+10x−7)+(x2+10x−7)−1 =(x2+10x−7)(x+1)−1. So, β3+11β2+3β−8=(β2+10β−7)(β+1)−1=(0)(β+1)−1=−1. Denominator = -1. The expression is −17=−7. So option D is incorrect.
All options A, B, and C are correct.