Solveeit Logo

Question

Question: Let $\alpha$ and $\beta$ are roots of $x^2 - 17x - 6 = 0$ with $\alpha > \beta$. If $a_n = \alpha^n ...

Let α\alpha and β\beta are roots of x217x6=0x^2 - 17x - 6 = 0 with α>β\alpha > \beta. If an=αn+βna_n = \alpha^n + \beta^n. The value of a106a8a9\frac{a_{10} - 6a_8}{a_9} is _______.

Answer

17

Explanation

Solution

Given that α\alpha and β\beta are roots of x217x6=0x^2-17x-6=0, we have

α+β=17\alpha+\beta=17 and αβ=6\alpha\beta=-6.

Since α\alpha is a root, it satisfies: α217α6=0α2=17α+6\alpha^2-17\alpha-6=0 \Rightarrow \alpha^2=17\alpha+6.

Subtract 6 from both sides: α26=17α\alpha^2-6=17\alpha.

Multiply this by α8\alpha^8: α8(α26)=17α9α106α8=17α9\alpha^8(\alpha^2-6)=17\alpha^9 \Rightarrow \alpha^{10}-6\alpha^8=17\alpha^9.

Similarly, for β\beta: β106β8=17β9\beta^{10}-6\beta^8=17\beta^9.

Now, an=αn+βna_n=\alpha^n+\beta^n. Therefore, a106a8=(α10+β10)6(α8+β8)=[α106α8]+[β106β8]=17α9+17β9=17(α9+β9)=17a9a_{10}-6a_8=(\alpha^{10}+\beta^{10})-6(\alpha^8+\beta^8) =[\alpha^{10}-6\alpha^8]+[\beta^{10}-6\beta^8]=17\alpha^9+17\beta^9=17(\alpha^9+\beta^9)=17a_9.

Thus, a106a8a9=17a9a9=17\frac{a_{10}-6a_8}{a_9}=\frac{17a_9}{a_9}=17.