Solveeit Logo

Question

Mathematics Question on Quadratic Equations

Let α(a)andβ(a)\alpha ( a) \, and \, \beta (a) be the roots of the equation (1+a31)x2(1+a1)x+(1+a61)=0 (\sqrt [3] {1 + a} - 1) x^2 - (\sqrt {1 + a} - 1) x + (\sqrt [ 6] {1 + a} - 1) = 0, where a > - 1. Then, lima0+lim_{a \to 0^+ }, α(a)andlima0+β\alpha (a) \, and \, lim_{a \to 0^+ } \beta (a) are

A

52- \frac{ 5}{2} and 1

B

12- \frac{ 1}{2} and -1

C

72- \frac{ 7}{2} and 2

D

92- \frac{ 9}{2} and 3

Answer

12- \frac{ 1}{2} and -1

Explanation

Solution

PLAN To make the quadratic into simple form we should eliminate radical sign. Description of Situation As for given equation, when a \rightarrow 0 the equation reduces to identity in x. i, e., ax2+bx+c=0,xRax^2 + bx + c = 0, \forall \, x \, \in R or a = b = c \rightarrow 0 Thus, first we should make above equation independent from coefficients as 0 . Let a+1=t6>a + 1 = t^6> Thus when a0,t1a \rightarrow 0, t \rightarrow 1. (t21)x2+(t31)x+(t1)=0(t^2 - 1) x^2 + (t^3 - 1) x + (t - 1) = 0 (t1)(t+1)x2+(t2+t+1)x+1=0,\Rightarrow (t - 1) \\{ (t + 1) x^2 + ( t^2 + t + 1) x + 1 \\} = 0, as t 1\rightarrow 1 \hspace25mm 2x2+3x+1=02x^2 + 3x + 1 = 0 \Rightarrow \hspace25mm 2x2+2x+x+1=02x^2 + 2x + x + 1 = 0 \Rightarrow \hspace25mm ( 2x + 1) (x + 1) = 0 Thus, \hspace25mm x = - 1, - 1 / 2 or \hspace25mm lima0+α(a)=1/2lim_{a \to 0^+ } \alpha (a) = -1 / 2 and \hspace25mm lima0+β(a)=1lim_{a \to 0^+} \beta (a) = - 1 .