Solveeit Logo

Question

Mathematics Question on Limits

Let α>0\alpha>0 If 0αxx+αxdx=16+20215\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x=\frac{16+20 \sqrt{2}}{15}, then α\alpha is equal to :

A

2

B

222 \sqrt{2}

C

4

D

2\sqrt{2}

Answer

2

Explanation

Solution

After rationalising
0axα(x+α+x)dx\int\limits_{0}^{a}\frac{x}{\alpha}\left(\sqrt{x+\alpha}+\sqrt{x}\right)dx
=0a1α[(x+α)3/2α(x+α)1/2+x3/2]dx=\int\limits_{0}^{a}\frac{1}{\alpha}[(x+\alpha)^{3/2}-\alpha(x+\alpha)^{1/2}+x^{3/2}]dx
=1α[25(x+α)5/2α23(x+α)3/2+25x5/2]0a=\frac{1}{\alpha}\left[\frac{2}{5}(x+\alpha)^{5/2}-\alpha\frac{2}{3}(x+\alpha)^{3/2}+\frac{2}{5}x^{5/2}\right]|^a_{0}
=1α[25(2α)5/22α3(2α)3/2+25α5/225α5/2+23α5/2]0a=\frac{1}\alpha{}[\frac{2}{5}(2\alpha)^{5/2}-\frac{2\alpha}{3}(2\alpha)^{3/2}+\frac{2}{5}\alpha^{5/2}-\frac{2}{5}\alpha^{5/2}+\frac{2}{3}\alpha^{5/2}]|^{a}_0
=1α[27/2α5/2525/2α5/23+23α5/2]=\frac{1}{\alpha}[\frac{2^{7/2}\alpha^{5/2}}{5}-\frac{2^{5/2}\alpha^{5/2}}{3}+\frac{2}{3}\alpha^{5/2}]
=α3/2[27/2525/23+23]=\alpha^{3/2}[\frac{2^{7/2}}{5}-\frac{2^{5/2}}{3}+\frac{2}{3}]
=α3/215(242202+10)=\frac{\alpha^{3/2}}{15}(24\sqrt2-20\sqrt2+10)
=α3/215(42+10)=\frac{\alpha^{3/2}}{15}(4\sqrt2+10)
Now,
α3/215(42+10)=16+20215\frac{\alpha^{3/2}}{15}(4\sqrt2+10)=\frac{16+20\sqrt2}{15}
α=2⇒\alpha=2
So, the correct option is (A) : 2