Solveeit Logo

Question

Question: Let ABCD is parallelogram such that \[\overline {AB} = \overrightarrow q ,\overline {AD} = \overrigh...

Let ABCD is parallelogram such that AB=q,AD=p and BAD\overline {AB} = \overrightarrow q ,\overline {AD} = \overrightarrow p {\text{ and }}\angle BAD be an acute angle. If r\overrightarrow r is the vector coincides with the altitude directed from the vertex BB to the side ADAD, then r\overrightarrow r is given by:

(A) r=3q3(p.q)p.pp (B) r=q+(p.qp.p)p (C) r=q(p.qp.p)p (D) r=3q+3(p.q)p.pp  {\text{(A) }}\overrightarrow r = 3\overrightarrow q - \dfrac{{3(\overrightarrow p .\overrightarrow q )}}{{\overrightarrow p .\overrightarrow p }}\overrightarrow p \\\ {\text{(B) }}\overrightarrow r = - \overrightarrow q + \left( {\dfrac{{\overrightarrow p .\overrightarrow q }}{{\overrightarrow p .\overrightarrow p }}} \right)\overrightarrow p \\\ {\text{(C) }}\overrightarrow r = \overrightarrow q - \left( {\dfrac{{\overrightarrow p .\overrightarrow q }}{{\overrightarrow p .\overrightarrow p }}} \right)\overrightarrow p \\\ {\text{(D) }}\overrightarrow r = - 3\overrightarrow q + \dfrac{{3(\overrightarrow p .\overrightarrow q )}}{{\overrightarrow p .\overrightarrow p }}\overrightarrow p \\\
Explanation

Solution

This problem is related to vector geometry. It should be noted here that a dot product of two vectors is a scalar quantity (A.B=ABcosθ,\overrightarrow A .\overrightarrow B = AB\cos \theta , where θ\theta is the angle between them) and if the vectors are perpendicular to each other their dot product is zero because the value of cos90=0\cos {90^ \circ } = 0. We will use this property of vector products to solve the problem.

Complete step-by-step answer:
Firstly, draw a parallelogram ABCD in such a way that AB=q,AD=p and BAD\overline {AB} = \overrightarrow q ,\overline {AD} = \overrightarrow p {\text{ and }}\angle BAD should be an acute angle. See below,

Now, in the diagram, draw a line originating from vertex BB to the side ADAD in such a way that it should be perpendicular to side ADAD. This way ΔAEB\Delta AEB will be a right angle triangle.
We know that, vectorr\overrightarrow r can be written in the form of vector q\overrightarrow q and vector p\overrightarrow p . Now, from the diagram above, it is known that the direction of vector r\overrightarrow r is opposite to the direction of vectorq\overrightarrow q . Hence, when we write the vector r\overrightarrow r in terms of vector q\overrightarrow q , we shall have to put a negative sign in front of the vector q\overrightarrow q .
Now, vector p\overrightarrow p represents the side ADAD, so assume that αp\alpha \overrightarrow p represents the side AEAE in ΔAEB\Delta AEB. Therefore, now vector r\overrightarrow r can be written in the form of vector q\overrightarrow q and vector p\overrightarrow p in the following way,
r=q+αp ................(1)\overrightarrow r = - \overrightarrow q + \alpha \overrightarrow p {\text{ }}................(1)
Now, we know that the dot product to two perpendicular vectors is zero. In this diagram, vectorr\overrightarrow r and vectorp\overrightarrow p are perpendicular to each other.
Therefore,
r.p=0\overrightarrow r .\overrightarrow p = 0
Putting the value of vectorr\overrightarrow r from eq. (1) in the above expression, we will get

r.p=0 (q+αp).p=0 q.p+αp.p=0 α=q.pp.p  \overrightarrow r .\overrightarrow p = 0 \\\ \Rightarrow ( - \overrightarrow q + \alpha \overrightarrow p ).\overrightarrow p = 0 \\\ \Rightarrow - \overrightarrow q .\overrightarrow p + \alpha \overrightarrow p .\overrightarrow p = 0 \\\ \Rightarrow \alpha = \dfrac{{\overrightarrow q .\overrightarrow p }}{{\overrightarrow p .\overrightarrow p }} \\\

Now, putting this value of α\alpha , we will get the value of vectorr\overrightarrow r as
r=q+q.pp.pp\overrightarrow r = - \overrightarrow q + \dfrac{{\overrightarrow q .\overrightarrow p }}{{\overrightarrow p .\overrightarrow p }}\overrightarrow p

So, the correct answer is “Option B”.

Note: In these types of problems, you should take care while drawing the diagram and putting the vector’s direction. Though, it is not given in the problem that the vector r\overrightarrow r is perpendicular top\overrightarrow p but we have assumed that they are perpendicular to each other so that property of dot product of vectors can be utilised.