Solveeit Logo

Question

Question: Let $ABCD$ be a regular tetrahedron. Suppose point $X, Y$ and $Z$ lie on rays $AB, AC$ and $AD$ resp...

Let ABCDABCD be a regular tetrahedron. Suppose point X,YX, Y and ZZ lie on rays AB,ACAB, AC and ADAD respectively such that XY=YZ=7XY = YZ = 7 and XZ=5XZ = 5. The length of AX,AYAX, AY and AZAZ are all distinct. If the volume of tetrahedron AXYZAXYZ is λ\sqrt{\lambda}, then λ\lambda equals

Answer

122

Explanation

Solution

Let AA be the origin. Let AB,AC,AD\vec{AB}, \vec{AC}, \vec{AD} be vectors representing the edges of the regular tetrahedron ABCDABCD originating from AA. Let the side length of the tetrahedron be aa. Then AB=AC=AD=a|\vec{AB}| = |\vec{AC}| = |\vec{AD}| = a. Since it is a regular tetrahedron, the angle between any two of these vectors is 6060^\circ. So, ABAC=ACAD=ADAB=a2cos(60)=a2/2\vec{AB} \cdot \vec{AC} = \vec{AC} \cdot \vec{AD} = \vec{AD} \cdot \vec{AB} = a^2 \cos(60^\circ) = a^2/2.

Point XX lies on ray ABAB, so AX=AXaAB\vec{AX} = \frac{AX}{a} \vec{AB}. Let x=AXx = AX. Then AX=xaAB\vec{AX} = \frac{x}{a} \vec{AB}. Point YY lies on ray ACAC, so AY=AYaAC\vec{AY} = \frac{AY}{a} \vec{AC}. Let y=AYy = AY. Then AY=yaAC\vec{AY} = \frac{y}{a} \vec{AC}. Point ZZ lies on ray ADAD, so AZ=AZaAD\vec{AZ} = \frac{AZ}{a} \vec{AD}. Let z=AZz = AZ. Then AZ=zaAD\vec{AZ} = \frac{z}{a} \vec{AD}. We are given that x,y,zx, y, z are distinct positive numbers.

We are given the lengths XY=7XY=7, YZ=7YZ=7, XZ=5XZ=5. XY2=XY2=AYAX2=yaACxaAB2=y2a2AC22xya2(ACAB)+x2a2AB2XY^2 = |\vec{XY}|^2 = |\vec{AY} - \vec{AX}|^2 = |\frac{y}{a}\vec{AC} - \frac{x}{a}\vec{AB}|^2 = \frac{y^2}{a^2}|\vec{AC}|^2 - \frac{2xy}{a^2}(\vec{AC} \cdot \vec{AB}) + \frac{x^2}{a^2}|\vec{AB}|^2 XY2=y2a2a22xya2a22+x2a2a2=y2xy+x2XY^2 = \frac{y^2}{a^2}a^2 - \frac{2xy}{a^2}\frac{a^2}{2} + \frac{x^2}{a^2}a^2 = y^2 - xy + x^2. So, x2xy+y2=72=49x^2 - xy + y^2 = 7^2 = 49. (1)

YZ2=YZ2=AZAY2=zaADyaAC2=z2a2AD22zya2(ADAC)+y2a2AC2YZ^2 = |\vec{YZ}|^2 = |\vec{AZ} - \vec{AY}|^2 = |\frac{z}{a}\vec{AD} - \frac{y}{a}\vec{AC}|^2 = \frac{z^2}{a^2}|\vec{AD}|^2 - \frac{2zy}{a^2}(\vec{AD} \cdot \vec{AC}) + \frac{y^2}{a^2}|\vec{AC}|^2 YZ2=z2a2a22zya2a22+y2a2a2=z2zy+y2YZ^2 = \frac{z^2}{a^2}a^2 - \frac{2zy}{a^2}\frac{a^2}{2} + \frac{y^2}{a^2}a^2 = z^2 - zy + y^2. So, y2yz+z2=72=49y^2 - yz + z^2 = 7^2 = 49. (2)

XZ2=XZ2=AZAX2=zaADxaAB2=z2a2AD22zxa2(ADAB)+x2a2AB2XZ^2 = |\vec{XZ}|^2 = |\vec{AZ} - \vec{AX}|^2 = |\frac{z}{a}\vec{AD} - \frac{x}{a}\vec{AB}|^2 = \frac{z^2}{a^2}|\vec{AD}|^2 - \frac{2zx}{a^2}(\vec{AD} \cdot \vec{AB}) + \frac{x^2}{a^2}|\vec{AB}|^2 XZ2=z2a2a22zxa2a22+x2a2a2=z2zx+x2XZ^2 = \frac{z^2}{a^2}a^2 - \frac{2zx}{a^2}\frac{a^2}{2} + \frac{x^2}{a^2}a^2 = z^2 - zx + x^2. So, x2xz+z2=52=25x^2 - xz + z^2 = 5^2 = 25. (3)

From (1) and (2): x2xy+y2=y2yz+z2    x2xy=z2yz    x2z2=xyyz    (xz)(x+z)=y(xz)x^2 - xy + y^2 = y^2 - yz + z^2 \implies x^2 - xy = z^2 - yz \implies x^2 - z^2 = xy - yz \implies (x-z)(x+z) = y(x-z). Since x,y,zx, y, z are distinct, xzx \neq z, so we can divide by (xz)(x-z). x+z=yx+z = y.

Substitute y=x+zy = x+z into (1) and (3). From (1): x2x(x+z)+(x+z)2=49    x2x2xz+x2+2xz+z2=49    x2+xz+z2=49x^2 - x(x+z) + (x+z)^2 = 49 \implies x^2 - x^2 - xz + x^2 + 2xz + z^2 = 49 \implies x^2 + xz + z^2 = 49. (4) From (3): x2xz+z2=25x^2 - xz + z^2 = 25. (5)

We have a system of equations for xx and zz: (4) x2+xz+z2=49x^2 + xz + z^2 = 49 (5) x2xz+z2=25x^2 - xz + z^2 = 25 Adding (4) and (5): 2x2+2z2=74    x2+z2=372x^2 + 2z^2 = 74 \implies x^2 + z^2 = 37. (6) Subtracting (5) from (4): 2xz=24    xz=122xz = 24 \implies xz = 12. (7)

We can find y2=(x+z)2=x2+2xz+z2=(x2+z2)+2xz=37+2(12)=37+24=61y^2 = (x+z)^2 = x^2 + 2xz + z^2 = (x^2+z^2) + 2xz = 37 + 2(12) = 37 + 24 = 61. So y=61y = \sqrt{61} (since y>0y>0). We can find (xz)2=x22xz+z2=(x2+z2)2xz=372(12)=3724=13(x-z)^2 = x^2 - 2xz + z^2 = (x^2+z^2) - 2xz = 37 - 2(12) = 37 - 24 = 13. So xz=±13x-z = \pm \sqrt{13}. We have x+z=61x+z = \sqrt{61} and xz=±13x-z = \pm \sqrt{13}. If xz=13x-z = \sqrt{13}, then 2x=61+132x = \sqrt{61}+\sqrt{13} and 2z=61132z = \sqrt{61}-\sqrt{13}. x=61+132,z=61132x = \frac{\sqrt{61}+\sqrt{13}}{2}, z = \frac{\sqrt{61}-\sqrt{13}}{2}. If xz=13x-z = -\sqrt{13}, then 2x=61132x = \sqrt{61}-\sqrt{13} and 2z=61+132z = \sqrt{61}+\sqrt{13}. x=61132,z=61+132x = \frac{\sqrt{61}-\sqrt{13}}{2}, z = \frac{\sqrt{61}+\sqrt{13}}{2}. In either case, the set of lengths {x,z}\{x, z\} is {61132,61+132}\{\frac{\sqrt{61}-\sqrt{13}}{2}, \frac{\sqrt{61}+\sqrt{13}}{2}\}. The three lengths are x,y,zx, y, z. The set of lengths is {61132,61,61+132}\{\frac{\sqrt{61}-\sqrt{13}}{2}, \sqrt{61}, \frac{\sqrt{61}+\sqrt{13}}{2}\}. These three values are distinct since 130\sqrt{13} \neq 0.

The volume of the tetrahedron AXYZAXYZ is given by V=16AX(AY×AZ)V = \frac{1}{6} |\vec{AX} \cdot (\vec{AY} \times \vec{AZ})|. V=16(xaAB)((yaAC)×(zaAD))=xyz6a3AB(AC×AD)V = \frac{1}{6} |(\frac{x}{a}\vec{AB}) \cdot ((\frac{y}{a}\vec{AC}) \times (\frac{z}{a}\vec{AD}))| = \frac{xyz}{6a^3} |\vec{AB} \cdot (\vec{AC} \times \vec{AD})|. The scalar triple product AB(AC×AD)\vec{AB} \cdot (\vec{AC} \times \vec{AD}) is related to the volume of the tetrahedron ABCDABCD. The volume of tetrahedron ABCDABCD is VABCD=16AB(AC×AD)V_{ABCD} = \frac{1}{6} |\vec{AB} \cdot (\vec{AC} \times \vec{AD})|. For a regular tetrahedron with side length aa, the volume is VABCD=a362V_{ABCD} = \frac{a^3}{6\sqrt{2}}. So, AB(AC×AD)=6a362=a32|\vec{AB} \cdot (\vec{AC} \times \vec{AD})| = 6 \cdot \frac{a^3}{6\sqrt{2}} = \frac{a^3}{\sqrt{2}}. VAXYZ=xyz6a3a32=xyz62V_{AXYZ} = \frac{xyz}{6a^3} \frac{a^3}{\sqrt{2}} = \frac{xyz}{6\sqrt{2}}.

We need the product xyzxyz. y=61y = \sqrt{61}. xz=12xz = 12. xyz=6112=1261xyz = \sqrt{61} \cdot 12 = 12\sqrt{61}.

VAXYZ=126162=2612=26122=122V_{AXYZ} = \frac{12\sqrt{61}}{6\sqrt{2}} = \frac{2\sqrt{61}}{\sqrt{2}} = \frac{2\sqrt{61}\sqrt{2}}{2} = \sqrt{122}. The volume is given as λ\sqrt{\lambda}. So, λ=122\sqrt{\lambda} = \sqrt{122}. λ=122\lambda = 122.

The final answer is 122\boxed{122}.