Solveeit Logo

Question

Mathematics Question on Conic sections

Let ABCDABCD be a quadrilateral with area 18, with side AB parallel to the side CDCD and AB=2CDAB = 2 CD. Let ADAD be perpendicular to ABAB and CDCD. If a circle is drawn inside the quadrilateral ABCDABCD touching all the sides, then its radius is

A

3

B

2

C

32\frac{3}{2}

D

1

Answer

2

Explanation

Solution

18=12(3α)(2r)αr=618=\frac{1}{2}(3\alpha)(2r)\Rightarrow\alpha r=6
Line, y=2rα(x2α)y=-\frac{2r}{\alpha}(x-2\alpha) is tangent to circle (xr)2+(yr)2=r2(x-r)^2+(y-r)^2=r^2 2α=3r,αr=62\alpha =3r , \alpha r=6 and r=2r=2
Alternate Solution 12(x+2x)×2r=18xr=6{\frac{1}{2}}(x+2x)\times2r=18\: x r=6....(i)
In \triangle AOB, tanθ=xrr\tan\theta=\frac {x-r}{r} and in \triangle DOC,
tan(90θ)=2xrr\tan(90^\circ-\theta)=\frac {2x-r}{r}
\therefore xrr=r2xr\frac {x-r}{r}=\frac {r}{2x-r}
\Rightarrow x(2x-3r)=0
\Rightarrow x=3r2x=\frac{3r}{2}
From Eqs. (i) and (ii), we get r=2r = 2