Solveeit Logo

Question

Quantitative Aptitude Question on Geometry

Let ABCD be a parallelogram. The lengths of the side AD and the diagonal AC are 10 cm and 20 cm, respectively. If the angle ADC∠ADC is equal to 30° then the area of the parallelogram, in sq. cm, is

A

25(3+15)2\frac{25(\sqrt{3}+\sqrt{15})}{2}

B

25(5+15)25(\sqrt5+\sqrt{15})

C

25(5+15)2\frac{25(\sqrt5+\sqrt{15})}{2}

D

25(3+15)25(\sqrt3+\sqrt{15})

Answer

25(3+15)25(\sqrt3+\sqrt{15})

Explanation

Solution

ABCD be a parallelogram.The lengths of the side AD and the diagonal AC are 10 cm and 20 cm

Applying cosine rule in triangle ACD
100+X22×10×Xcos30=400100+X ^2 −2× 10× Xcos30=400
X210X3300=0X^ 2 −10X \sqrt3−300=0

X=(103+10152)⇒ X = ( \frac{10\sqrt3 + 10\sqrt{15}}{ 2} )

X is the length of one of the sides of the parallelogram, hence it can’t be negative.

area=10Xsin30=(103+10152)102∴ area = 10Xsin 30 =\frac{ (\frac{ 10\sqrt3 + 10\sqrt{15} }{2} )10 }{2}

=25(3+15)= 25 ( \sqrt3 + \sqrt{15} )